1
|
Xiao R, Yuan Y, Zhu F, He S, Ge Q, Wang X, Taha R, Chen K. Transcriptomics and proteomics-based analysis of heterosis on main economic traits of silkworm, Bombyx mori. J Proteomics 2020; 229:103941. [PMID: 32805450 DOI: 10.1016/j.jprot.2020.103941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 08/09/2020] [Indexed: 11/15/2022]
Abstract
The application of silkworm hybrids have promoted the innovation and development of agricultural technology, but the mechanism of heterosis in silkworm has not been explained clearly. In this study, the heterosis of silkworm in the aspects of body weight, silk gland and cocoon weight was investigated by means of silkworm hybridization and multi-omics approaches, including transcriptome and proteome. The results showed that heterosis of silkworm body weight, silk gland and cocoon weight was overdominant, but only part of genes and proteins were overdominant, and most of genes and proteins were non-additive. Combined analysis obtained six up-regulated genes and four down-regulated genes that were consistent both in transcriptome and proteome. Gene functional enrichment analysis indicated that most up-regulated genes and proteins were mostly related to metabolism, which led to accelerated metabolism and protein synthesis and contributing to improved heterosis. The up-regulation of 6-phosphate glucose dehydrogenase (G6PDH), phosphatidylethanolamine-binding protein (PEBP) and sHSP20.4, which are involved in metabolism, might be related to silk gland heterosis. SIGNIFICANCE: A combination of transcriptomic and proteomic analysis was used to understand the molecular mechanism of silkworm heterosis. We found that the phenotypic traits of silkworm are overdominant, while the analysis of transcriptome and proteome showed that only part of genes and proteins were overdominant, and most of genes and proteins were non-additive. Some of the genes had unique expression in F1, which was speculated that genes under heterozygous condition may result in rearrangement and cause metabolic changes in the hybrids. Those both up-regulated in transcriptomic and proteomic analysis were found to be involved in various metabolic processes, so as to accelerate metabolism and protein synthesis, thus exhibiting heterosis.
Collapse
Affiliation(s)
- Rui Xiao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Yuan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Suqun He
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qi Ge
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xueqi Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rehab Taha
- Plant Protection Research Institute, Agricultural Research Center, Egypt
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
2
|
Hu F, Lin N, Liu XY. Interplay between Light and Functionalized Silk Fibroin and Applications. iScience 2020; 23:101035. [PMID: 32311584 PMCID: PMC7168770 DOI: 10.1016/j.isci.2020.101035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 11/15/2022] Open
Abstract
Silkworm silk has been considered to be a luxurious textile for more than five thousand years. Native silk fibroin (SF) films have excellent (ca. 90%) optical transparency and exhibit fluorescence under UV light. The silk dyeing process is very important and difficult, and methods such as pigmentary coloration and structural coloration have been tested for coloring silk fabrics. To functionalize silk that exhibits fluorescence, the in vivo and in vitro assembly of functional compounds with SF and the resulting amplification of fluorescence emission are examined. Finally, we discuss the applications of SF materials in basic optical elements, light energy conversion devices, photochemical reactions, sensing, and imaging. This review is expected to provide insight into the interaction between light and silk and to inspire researchers to develop silk materials with a consideration of history, material properties, and future prospects.
Collapse
Affiliation(s)
- Fan Hu
- Institute of Advanced Materials, East China Jiaotong University, No. 808 Shuanggang East Street, Nanchang 330013, China; Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Naibo Lin
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China.
| | - X Y Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore.
| |
Collapse
|
3
|
He Y, Zhang LM, Chen YM, Sun L, Hu C, Wang MX, Gao Y, Yang JH, Zhang QQ. Biocompatible Photoluminescent Silk Fibers with Stability and Durability. ACS Biomater Sci Eng 2019; 5:2657-2668. [DOI: 10.1021/acsbiomaterials.9b00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuan He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Li Mei Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yong Mei Chen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Key Laboratory of Leather Cleaner Production, China National Light Industry, Xi’an, Shaanxi 710021, China
| | - Lei Sun
- School of Science, State Key Laboratory for Mechanical Behaviour of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chen Hu
- School of Science, State Key Laboratory for Mechanical Behaviour of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Mei Xiang Wang
- School of Science, State Key Laboratory for Mechanical Behaviour of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yang Gao
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jian Hai Yang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Qi Qing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350002, China
- Fujian Guided
Tissue Regeneration (GTR) Biotechnology Co., Ltd., Fuzhou 350108, China
| |
Collapse
|
4
|
Nonvirus encoded proteins could be embedded into Bombyx mori cypovirus polyhedra. Mol Biol Rep 2014; 41:2657-66. [PMID: 24469718 DOI: 10.1007/s11033-014-3124-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
Abstract
To explore whether the nonvirus encoded protein could be embedded into Bombyx mori cypovirus (BmCPV) polyhedra. The stable transformants of BmN cells expressing a polyhedrin (Polh) gene of BmCPV were constructed by transfection with a non-transposon derived vector containing a polh gene. The polyhedra were purified from the midguts of BmCPV-infected silkworms and the transformed BmN cells, respectively. The proteins embedded into polyhedra were determined by mass spectrometry analysis. Host derived proteins were detected in the purified polyhedra. Analysis of structure and hydrophilicity of embedded proteins indicated that the hydrophilic proteins, in structure, were similar to the left-handed structure of polyhedrin or the N-terminal domain of BmCPV structural protein VP3, which were easily embedded into the BmCPV polyhedra. The lysate of polyhedra purified from the infected transformation of BmN cells with modified B. mori baculovirus BmPAK6 could infect BmN cells, indicating that B. mori baculovirus could be embedded into BmCPV polyhedra. Both the purified polyhedra and its lysate could be coloured by X-gal, indicating that the β-galactosidase expressed by BmPAK6 could be incorporated into BmCPV polyhedra. These results suggested that some heterologous proteins and baculovirus could be embedded into polyhedra in an unknown manner.
Collapse
|
5
|
Kusurkar TS, Tandon I, Sethy NK, Bhargava K, Sarkar S, Singh SK, Das M. Fluorescent silk cocoon creating fluorescent diatom using a "Water glass-fluorophore ferry". Sci Rep 2013; 3:3290. [PMID: 24256845 PMCID: PMC3836033 DOI: 10.1038/srep03290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/06/2013] [Indexed: 11/09/2022] Open
Abstract
Fluorophores are ubiquitous in nature. Naturally occurring fluorophores are exceptionally stable and have high quantum yield. Several natural systems have acquired fluorescent signature due to the presence of these fluorophores. Systematic attempt to harvest these fluorophores from natural systems could reap rich commercial benefit to bio-imaging industry. Silk cocoon biomaterial is one such example of natural system, which has acquired a fluorescent signature. The objective of this study is to develop simple, rapid, commercially viable technique to isolate silk cocoon membrane fluorophores and exploring the possibility of using them as fluorescent dye in bio-imaging. Here, we report an innovative water glass (Na2SiO3) based strategy to isolate the silk cocoon fluorophores. Isolated fluorophore is majorly quercetin derivatives and exhibited remarkable photo- and heat stability. Fluorescence and mass spectrometric analysis confirmed presence of a quercetin derivative. We further used this fluorophore to successfully label the silicate shell of diatom species Nitzschia palea.
Collapse
Affiliation(s)
- Tejas S. Kusurkar
- ‘Bio-electricity, Green Energy, Physiology & Sensor Group’, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ishita Tandon
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Rajasthan, 304022, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Defense Research Development Organization, Timarpur, Delhi, 110054, India
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Defense Research Development Organization, Timarpur, Delhi, 110054, India
| | - Sabyasachi Sarkar
- Department of Chemistry, Bengal Engineering & Science University, Shibpur, Howrah, West Bengal, 711103, India
| | - Sushil Kumar Singh
- Functional Materials Group, Solid State Physics Laboratory, Defense Research Development Organization, Timarpur, Delhi, 110054, India
| | - Mainak Das
- ‘Bio-electricity, Green Energy, Physiology & Sensor Group’, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Design Program, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|