1
|
Enkhbaatar T, Skoneczny M, Stępień K, Mołoń M, Skoneczna A. Live while the DNA lasts. The role of autophagy in DNA loss and survival of diploid yeast cells during chronological aging. Aging (Albany NY) 2023; 15:9965-9983. [PMID: 37815879 PMCID: PMC10599738 DOI: 10.18632/aging.205102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Aging is inevitable and affects all cell types, thus yeast cells are often used as a model in aging studies. There are two approaches to studying aging in yeast: replicative aging, which describes the proliferative potential of cells, and chronological aging, which is used for studying post-mitotic cells. While analyzing the chronological lifespan (CLS) of diploid Saccharomyces cerevisiae cells, we discovered a remarkable phenomenon: ploidy reduction during aging progression. To uncover the mechanism behind this unusual process we used yeast strains undergoing a CLS assay, looking for various aging parameters. Cell mortality, regrowth ability, autophagy induction and cellular DNA content measurements indicated that during the CLS assay, dying cells lost their DNA, and only diploids survived. We demonstrated that autophagy was responsible for the gradual loss of DNA. The nucleophagy marker activation at the start of the CLS experiment correlated with the significant drop in cell viability. The activation of piecemeal microautophagy of nucleus (PMN) markers appeared to accompany the chronological aging process until the end. Our findings emphasize the significance of maintaining at least one intact copy of the genome for the survival of post-mitotic diploid cells. During chronological aging, cellular components, including DNA, are exposed to increasing stress, leading to DNA damage and fragmentation in aging cells. We propose that PMN-dependent clearance of damaged DNA from the nucleus helps prevent genome rearrangements. However, as long as one copy of the genome can be rebuilt, cells can still survive.
Collapse
Affiliation(s)
- Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, Rzeszów 35-959, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, Rzeszów 35-601, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
2
|
Lin JC, Wang XZ, Shen T, Zhang JY. iTRAQ-based quantitative analysis reveals the mechanism underlying the changes in physiological activity in a glutamate racemase mutant strain of Streptococcus mutans UA159. Mol Biol Rep 2020; 47:3719-3733. [PMID: 32338332 DOI: 10.1007/s11033-020-05463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
Streptococcus mutans UA159 is responsible for human dental caries with robust cariogenic potential. Our previous study noted that a glutamate racemase (MurI) mutant strain (designated S. mutans FW1718), with the hereditary background of UA159, displayed alterations of morphogenesis, attenuated stress tolerance, and weakened biofilm-forming capabilities, accompanying with unclear mechanisms. In this study, we applied isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics to characterize the proteome profiles of the murI mutant strain vs. the wild-type strain in chemically defined media to elucidate the mechanisms by which S. mutans copes with MurI deficiency. Whole-cell proteins of S. mutans FW1718 and UA159 were assessed by iTRAQ-coupled LC-ESI-MS/MS. Furthermore, differentially expressed proteins (DEPs) were identified by Mascot, Gene Ontology (GO) annotation, Cluster of Orthologous Groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, a protein-protein interaction (PPI) network was established using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Among 1173 total bacterial proteins identified, 112 DEPs exhibited altered expression patterns in S. mutans UA159 with or without the murI mutation. The ΔmurI cells displayed an increase in the relative expression of 93 proteins (fold change ≥ 1.2, p < 0.05) and a decrease in 29 proteins (fold change ≤ 0.833, p < 0.05) compared with the wild-type cells. PPI analysis revealed a complex network of DEPs containing 191 edges and 122 nodes. The DEPs significantly upregulated after murI knockout had roles in diverse functional processes spanning cell-wall biosynthesis, energy production, and DNA replication and repair. We identified distinct variations and diverse modulators caused by murI mutation in the proteome of S. mutans, indicating that the modification of cell membrane structure, redistribution of energy metabolism and enhanced nucleic acid machinery contributed to the S. mutans response to specific environmental contexts.
Collapse
Affiliation(s)
- Jia-Cheng Lin
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiang-Zhu Wang
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Ting Shen
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Ying Zhang
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Güven E, Parnell LA, Jackson ED, Parker MC, Gupta N, Rodrigues J, Qin H. Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae. PeerJ 2016; 4:e2671. [PMID: 27833823 PMCID: PMC5101604 DOI: 10.7717/peerj.2671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/09/2016] [Indexed: 01/28/2023] Open
Abstract
Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells' ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell's ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast.
Collapse
Affiliation(s)
- Emine Güven
- Department of Biology, Spelman College, Atlanta, Georgia, United States
- Current affiliation: Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States
| | - Lindsay A. Parnell
- Department of Biology, Spelman College, Atlanta, Georgia, United States
- Current affiliation: Program of Molecular Genetics and Genomics, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Erin D. Jackson
- Department of Biology, Spelman College, Atlanta, Georgia, United States
| | - Meighan C. Parker
- Department of Biology, Spelman College, Atlanta, Georgia, United States
| | - Nilin Gupta
- Department of Biology, Spelman College, Atlanta, Georgia, United States
| | - Jenny Rodrigues
- Department of Biology, Spelman College, Atlanta, Georgia, United States
| | - Hong Qin
- Department of Biology, Spelman College, Atlanta, Georgia, United States
- Current affiliation: Department of Computer Science and Engineering, Department of Biology, Geology, and Environmental Science, SimCenter, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States
| |
Collapse
|
4
|
Kanagavijayan D, Rajasekharan R, Srinivasan M. Yeast MRX deletions have short chronological life span and more triacylglycerols. FEMS Yeast Res 2015; 16:fov109. [PMID: 26678749 DOI: 10.1093/femsyr/fov109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/20/2022] Open
Abstract
Saccharomyces cerevisiae is an excellent model organism for lipid research. Here, we have used yeast haploid RAdiation Damage (RAD) deletion strains to study life span and lipid storage patterns. RAD genes are mainly involved in DNA repair mechanism and hence, their deletions have resulted in shorter life span. Viable RAD mutants were screened for non-polar lipid content, and some of the mutants showed significantly high amounts of triacylglycerol (TAG) and steryl ester, besides short chronological life span. Among these, RAD50, MRE11 and XRS2 form a complex, MRX that is involved in homologous recombination that showed an increase in the amount of TAG. Microarray data of single MRX deletions revealed that besides DNA damage signature genes, lipid metabolism genes are also differentially expressed. Lipid biosynthetic genes (LPP1, SLC1) were upregulated and lipid hydrolytic gene (TGL3) was downregulated. We observed that rad50Δ, mre11Δ, xrs2Δ and mrxΔ strains have high number of lipid droplets (LDs) with fragmented mitochondria. These mutants have a short chronological life span compared to wild type. Aged wild-type cells also accumulated TAG with LDs of ∼2.0 μm in diameter. These results suggest that TAG accumulation and big size LDs could be possible markers for premature or normal aging.
Collapse
Affiliation(s)
- Dhanabalan Kanagavijayan
- Lipidomics Center, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Bangalore-560065, India Lipidomics Center, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore-570020, India
| | - Ram Rajasekharan
- Lipidomics Center, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore-570020, India
| | - Malathi Srinivasan
- Lipidomics Center, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Bangalore-560065, India The Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI, Mysore-570020, India
| |
Collapse
|
5
|
Aslan A, Can Mİ, Boydak D. Anti-oxidant effects of pomegranate juice on Saccharomyces cerevisiae cell growth. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:14-8. [PMID: 25392575 DOI: 10.4314/ajtcam.v11i4.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pomegranate juice has a number of positive effects on both human and animal subjects. MATERIAL AND METHODS Four groups were used in this study. i: Control group, ii: H2O2 group, iii: Pomegranate juice (PJ) group and iv: PJ + H2O2 group. Following the sterilization method for pomegranate juice (10%) and H2O2 (6% v/v), Saccharomyces cerevisiae cultures were added and the cultivation incubated at 35°C for 72 hours. Fatty acids and vitamin concentrations were measured using HPLC and GC and the total protein bands profile were determined by SDS-PAGE. RESULTS According to our results statistically significant differences have been determined among the study groups in terms of fatty acids and vitamin (p<0,05). Fatty acid synthesis, vitamin control and cell density increased in groups to which PJ was given in comparison with the control group (p<0,05). Pomegranate juice increased vitamins, fatty acids and total protein expression in Saccharomyces cerevisiae in comparison with the control. CONCLUSION Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development.
Collapse
Affiliation(s)
- Abdullah Aslan
- Firat University, Faculty of Science, Department of Biology, Elazığ-TURKEY
| | | | - Didem Boydak
- Firat University, Faculty of Science, Department of Biology, Elazığ-TURKEY
| |
Collapse
|
6
|
Yucel EB, Eraslan S, Ulgen KO. The impact of medium acidity on the chronological life span ofSaccharomyces cerevisiae - lipids, signaling cascades, mitochondrial and vacuolar functions. FEBS J 2014; 281:1281-303. [DOI: 10.1111/febs.12705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Esra B. Yucel
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| |
Collapse
|
7
|
Weinberger M, Sampaio-Marques B, Ludovico P, Burhans WC. DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction. Cell Cycle 2013; 12:1189-200. [PMID: 23518504 DOI: 10.4161/cc.24232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.
Collapse
Affiliation(s)
- Martin Weinberger
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | |
Collapse
|