1
|
Thool M, Dey C, Bhattacharyya S, Sudhagar S, Thummer RP. Generation of a Recombinant Stem Cell-Specific Human SOX2 Protein from Escherichia coli Under Native Conditions. Mol Biotechnol 2021; 63:327-338. [PMID: 33570706 DOI: 10.1007/s12033-021-00305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The stem cell-specific SOX2 transcription factor is critical for early embryonic development and the maintenance of embryonic and neural stem cell identity. It is also crucial for the generation of induced pluripotent and neural stem cells, thus providing immense prospect in patient-specific therapies. Here, we report soluble expression and purification of human SOX2 protein under native conditions from a bacterial system. To generate this macromolecule, we codon-optimized the protein-coding sequence and fused it to a nuclear localization signal, a protein transduction domain, and a His-tag. This was then cloned into a protein expression vector and was expressed in Escherichia coli. Subsequently, we have screened and identified the optimal expression conditions to obtain recombinant fusion protein in a soluble form and studied its expression concerning the position of fusion tags at either terminal. Furthermore, we purified two versions of recombinant SOX2 fusion proteins to homogeneity under native conditions and demonstrated that they maintained their secondary structure. This molecular tool can substitute genetic and viral forms of SOX2 to facilitate the derivation of integration-free induced pluripotent and neural stem cells. Furthermore, it can be used in elucidating its role in stem cells, various cellular processes and diseases, and for structural and biochemical studies.
Collapse
Affiliation(s)
- Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Protein-based direct reprogramming of fibroblasts to neuronal cells using 30Kc19 protein and transcription factor Ascl1. Int J Biochem Cell Biol 2020; 121:105717. [DOI: 10.1016/j.biocel.2020.105717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
|
3
|
Cravero D, Martignani E, Miretti S, Accornero P, Pauciullo A, Sharma R, Donadeu FX, Baratta M. Generation of Induced Pluripotent Stem Cells from Bovine Epithelial Cells and Partial Redirection Toward a Mammary Phenotype In Vitro. Cell Reprogram 2016; 17:211-20. [PMID: 26053520 DOI: 10.1089/cell.2014.0087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In contrast to adult stem cells, induced pluripotent stem cells (iPSCs) can be grown robustly in vitro and differentiated into virtually any tissue, thus providing an attractive alternative for biomedical applications. Although iPSC technology is already being used in human biomedicine, its potential in animal production has not been investigated. Herein, we investigated the potential application of iPSCs in dairy production by generating bovine iPSCs and establishing their ability to generate mammary epithelial tissue. iPSCs were derived by retrovirus-mediated expression of murine Oct4, Sox2, Klf4, and c-Myc in mammary epithelium and dermal fibroblasts. The resulting reprogrammed cells stained positive for alkaline phosphatase and showed renewed expression of pluripotency genes, including Lin28, Rex1, Oct4, Sox2, and Nanog. In addition, injection of epithelial- or fibroblast-derived reprogrammed cells into nonobese diabetic (NOD/NOD) mice resulted in the formation of teratomas containing differentiated derivatives of the three germ layers, including cartilage, membranous ossification, stratified squamous epithelial tissue, hair follicles, neural pinwheels, and different types of glandular tissue. Finally, mammary epithelium-derived iPSCs could be induced to differentiate back to a mammary phenotype characterized by epithelial cells expressing cytokeratin 14 (CK14), CK18, and smooth muscle actin (SMA) as a result of treatment with 10 nM progesterone. This study reports for the first time the generation of iPSCs from bovine epithelial cells and demonstrates the potential of using iPSCs technology for generating bovine mammary tissue in vitro.
Collapse
Affiliation(s)
- Diego Cravero
- 1 Department of Veterinary Science, University of Torino , 10095 Grugliasco (TO), Italy
| | - Eugenio Martignani
- 1 Department of Veterinary Science, University of Torino , 10095 Grugliasco (TO), Italy
| | - Silvia Miretti
- 1 Department of Veterinary Science, University of Torino , 10095 Grugliasco (TO), Italy
| | - Paulo Accornero
- 1 Department of Veterinary Science, University of Torino , 10095 Grugliasco (TO), Italy
| | - Alfredo Pauciullo
- 2 Department Agricultural, Forest and Food Sciences, University of Torino , Grugliasco (TO), Italy
| | - Ruchi Sharma
- 3 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Midlothian, United Kingdom
| | - Francesco Xavier Donadeu
- 3 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Midlothian, United Kingdom
| | - Mario Baratta
- 1 Department of Veterinary Science, University of Torino , 10095 Grugliasco (TO), Italy
| |
Collapse
|
4
|
Emerging landscape of cell penetrating peptide in reprogramming and gene editing. J Control Release 2016; 226:124-37. [PMID: 26849918 DOI: 10.1016/j.jconrel.2016.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
|
5
|
Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein. Appl Microbiol Biotechnol 2015; 100:3523-32. [DOI: 10.1007/s00253-015-7199-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/15/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
|
6
|
Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7:315-328. [PMID: 25815117 PMCID: PMC4369489 DOI: 10.4252/wjsc.v7.i2.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals.
Collapse
|
7
|
Hu P, He X, Zhu C, Guan W, Ma Y. Cloning and characterization of a ribosomal protein L23a gene from Small Tail Han sheep by screening of a cDNA expression library. Meta Gene 2014; 2:479-88. [PMID: 25606432 PMCID: PMC4287807 DOI: 10.1016/j.mgene.2014.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/05/2014] [Accepted: 06/20/2014] [Indexed: 12/20/2022] Open
Abstract
As an indispensable component of the eukaryotic ribosome, ribosomal protein L23a plays an important role in protein synthesis, folding and sorting. In this study, the cDNA fragment of ribosomal protein L23a with 471 bp in size was screened from the Small Tail Han sheep ear marginal tissue cDNA expression library, it has 157 amino acids and a molecular weight of 17.69 kDa. The nucleotide sequence of L23a shares a high homology with those of human, mouse, cattle and pig of 91.51%, 88.32%, 96.18% and 93.84%, respectively. L23a is highly basic, containing a combined 45 Arg, Lys, and His residues and only 14 Asp and Glu residues. The expression pattern and intra-cellular distribution of recombinant L23a proteins in Ujumqin sheep fibroblast cells were analyzed after transfected with the plasmid pEGFP-N3-RPL23A, there were green fluorescence signals both in the cytoplasm and nucleolus of transfected cells after 24 h, the number of positive cells was increased with time, and they reached the peak level after 48 h of transfection. The transfection efficiency was 22.8%. Expression patterns of recombinant L23a gene in Escherichia coli were different with induction temperature, inductor concentration and induction time, when the IPTG concentration was 0.1 mmol/L and induction temperature was 37°, L23a protein expression was increased with induction time.
Collapse
Key Words
- Arg, arginine
- Asp, aspartic acid
- EGFP, enhanced green fluorescence protein
- Expression pattern
- Glu, glutamic acid
- His, histidine
- IPTG, isopropyl-β-D-thiogalactopyranoside
- Lys, lysine
- NADH, nicerinamide adenine dinucleotide
- RPL23A, ribosomal protein L23a
- Ribosomal protein L23a
- Small Tail Han sheep
- TSK, tsukushin
- cDNA expression library
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Xiaohong He
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Chao Zhu
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Weijun Guan
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Yuehui Ma
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
8
|
Cell-permeant recombinant Nanog protein promotes pluripotency by inhibiting endodermal specification. Stem Cell Res 2014; 12:680-9. [DOI: 10.1016/j.scr.2014.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022] Open
|
9
|
Study on characteristics of chemokine CXCL10 gene cloned from cDNA expression library of Ujumqin sheep. BIOMED RESEARCH INTERNATIONAL 2013; 2013:217942. [PMID: 24187661 PMCID: PMC3804364 DOI: 10.1155/2013/217942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/26/2013] [Indexed: 01/20/2023]
Abstract
Chemokines were a major regulator of body's inflammatory and immune responses. In this study, the cDNA fragment of chemokine CXC ligand 10 (CXCL10) was cloned from the Ujumqin sheep ear marginal tissue cDNA expression library; the CXCL10 gene had 103 amino acids and a molecular weight of 11.47 kDa, and it shared a high homology among cattle, sheep, and goat, while a low homology compared with mouse. The CXCL10 protein had 4 conservative cysteine residues, located in 28, 30, 55, and 72 sites. The expression pattern and intracellular distribution of recombinant CXCL10 proteins in Ujumqin sheep fibroblast cells showed that there were green fluorescence signals both in cytoplasm and nucleolus after 24 h of transfection, the number of positive cells was increased with time, the peak level of fluorescence signal was reached after 48 h of transfection and the transfection efficiency was 33.3%; there was a significant decrease in fluorescence intensity after 72 h of transfection. Expression of recombinant CXCL10 gene in Escherichia coli had a time- and temperature-dependency on the amount of protein expression, and a small quantity of inducer was needed.
Collapse
|
10
|
Hu PF, Guan WJ, Li XC, Zhang WX, Li CL, Ma YH. Study on characteristics of in vitro culture and intracellular transduction of exogenous proteins in fibroblast cell line of Liaoning cashmere goat. Mol Biol Rep 2012; 40:327-36. [PMID: 23065271 DOI: 10.1007/s11033-012-2064-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Establishment of fibroblast cell lines of endangered goat breeds and research on the gene or protein functions based on the cells made a significant contribution to the conservation and utilization of genetic resources. In this study, a fibroblast cell line of Liaoning cashmere goat, frozen in 174 cryovials with 5 × 10(6) cells each, was successfully established from 60 goats ear marginal tissues using explant culture and cryopreservation techniques. Biological analysis of in vitro cultured cell line showed that, the cells were morphologically consistent with fibroblasts; the average viability of the cells was 94.9 % before freezing and 90.1 % after thawing; the growth process of cells was consisted of a lag phase, a logarithmic phase and a plateau phase; cell population doubling time was 65.5 h; more than 90 % of cells were diploid prior to the 6th generation; Neither microbial contamination nor cross-contamination was detected. To determine cell permeability, intracellular path and stability of exogenous proteins during the transduction, a TAT protein transduction domain was fused to the C-terminus of enhanced green fluorescent protein, the established fibroblast cell line was treated with the purified exogenous proteins at various concentrations by adding them to the cell culture media for 1-24 h and assayed cell morphology and protein presence, it was found that the purified exogenous proteins readily entered cells at a concentration of 0.1 mg/ml within 1.5 h and some of them could translocate into nucleus, moreover, the exogenous proteins appeared to be stable inside cells for up to 24 h.
Collapse
Affiliation(s)
- P F Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|