1
|
Lebedev V. Impact of Intron and Retransformation on Transgene Expression in Leaf and Fruit Tissues of Field-Grown Pear Trees. Int J Mol Sci 2023; 24:12883. [PMID: 37629068 PMCID: PMC10454629 DOI: 10.3390/ijms241612883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Stable and high expression of introduced genes is a prerequisite for using transgenic trees. Transgene stacking enables combining several valuable traits, but repeated transformation increases the risk of unintended effects. This work studied the stability and intron-mediated enhancement of uidA gene expression in leaves and different anatomical parts of pear fruits during field trials over 14 years. The stability of reporter and herbicide resistance transgenes in retransformed pear plants, as well as possible unintended effects using high-throughput phenotyping tools, were also investigated. The activity of β-glucuronidase (GUS) varied depending on the year, but silencing did not occur. The uidA gene was expressed to a maximum in seeds, slightly less in the peel and peduncles, and much less in the pulp of pear fruits. The intron in the uidA gene stably increased expression in leaves and fruits by approximately twofold. Retransformants with the bar gene showed long-term herbicide resistance and exhibited no consistent changes in leaf size and shape. The transgenic pear was used as rootstock and scion, but grafted plants showed no transport of the GUS protein through the graft in the greenhouse and field. This longest field trial of transgenic fruit trees demonstrates stable expression under varying environmental conditions, the expression-enhancing effect of intron and the absence of unintended effects in single- and double-transformed woody plants.
Collapse
Affiliation(s)
- Vadim Lebedev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
2
|
Ha CM, Rao X, Saxena G, Dixon RA. Growth-defense trade-offs and yield loss in plants with engineered cell walls. THE NEW PHYTOLOGIST 2021; 231:60-74. [PMID: 33811329 DOI: 10.1111/nph.17383] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 05/18/2023]
Abstract
As a major component of plant secondary cell walls, lignin provides structural integrity and rigidity, and contributes to primary defense by providing a physical barrier to pathogen ingress. Genetic modification of lignin biosynthesis has been adopted to reduce the recalcitrance of lignified cell walls to improve biofuel production, tree pulping properties and forage digestibility. However, lignin-modification is often, but unpredictably, associated with dwarf phenotypes. Hypotheses suggested to explain this include: collapsed vessels leading to defects in water and solute transport; accumulation of molecule(s) that are inhibitory to plant growth or deficiency of metabolites that are critical for plant growth; activation of defense pathways linked to cell wall integrity sensing. However, there is still no commonly accepted underlying mechanism for the growth defects. Here, we discuss recent data on transcriptional reprogramming in plants with modified lignin content and their corresponding suppressor mutants, and evaluate growth-defense trade-offs as a factor underlying the growth phenotypes. New approaches will be necessary to estimate how gross changes in transcriptional reprogramming may quantitatively affect growth. Better understanding of the basis for yield drag following cell wall engineering is important for the biotechnological exploitation of plants as factories for fuels and chemicals.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiaolan Rao
- College of Life Sciences, Hubei University, No. 28 Nanli Road, Hong-shan District, Wuchang, Wuhan, Hubei Province, 430068, China
| | - Garima Saxena
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
3
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
4
|
Hydrogen Peroxide Response in Leaves of Poplar (Populus simonii × Populus nigra) Revealed from Physiological and Proteomic Analyses. Int J Mol Sci 2017; 18:ijms18102085. [PMID: 28974034 PMCID: PMC5666767 DOI: 10.3390/ijms18102085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 11/17/2022] Open
Abstract
Hydrogen peroxide (H₂O₂) is one of the most abundant reactive oxygen species (ROS), which plays dual roles as a toxic byproduct of cell metabolism and a regulatory signal molecule in plant development and stress response. Populus simonii × Populus nigra is an important cultivated forest species with resistance to cold, drought, insect and disease, and also a key model plant for forest genetic engineering. In this study, H₂O₂ response in P. simonii × P. nigra leaves was investigated using physiological and proteomics approaches. The seedlings of 50-day-old P. simonii × P. nigra under H₂O₂ stress exhibited stressful phenotypes, such as increase of in vivo H₂O₂ content, decrease of photosynthetic rate, elevated osmolytes, antioxidant accumulation, as well as increased activities of several ROS scavenging enzymes. Besides, 81 H₂O₂-responsive proteins were identified in the poplar leaves. The diverse abundant patterns of these proteins highlight the H₂O₂-responsive pathways in leaves, including 14-3-3 protein and nucleoside diphosphate kinase (NDPK)-mediated signaling, modulation of thylakoid membrane structure, enhancement of various ROS scavenging pathways, decrease of photosynthesis, dynamics of proteins conformation, and changes in carbohydrate and other metabolisms. This study provides valuable information for understanding H₂O₂-responsive mechanisms in leaves of P. simonii × P. nigra.
Collapse
|
5
|
Comparative genomic analysis of transgenic poplar dwarf mutant reveals numerous differentially expressed genes involved in energy flow. Int J Mol Sci 2014; 15:15603-21. [PMID: 25192286 PMCID: PMC4200758 DOI: 10.3390/ijms150915603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/26/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022] Open
Abstract
In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481) was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development.
Collapse
|
6
|
Luzzatto-Knaan T, Kerem Z, Doron-Faigenboim A, Yedidia I. Priming of protein expression in the defence response of Zantedeschia aethiopica to Pectobacterium carotovorum. MOLECULAR PLANT PATHOLOGY 2014; 15:364-78. [PMID: 24822269 PMCID: PMC6638884 DOI: 10.1111/mpp.12100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The defence response of Zantedeschia aethiopica, a natural rhizomatous host of the soft rot bacterium Pectobacterium carotovorum, was studied following the activation of common induced resistance pathways—systemic acquired resistance and induced systemic resistance. Proteomic tools were used, together with in vitro quantification and in situ localization of selected oxidizing enzymes. In total, 527 proteins were analysed by label-free mass spectrometry (MS) and annotated against the National Center for Biotechnology Information (NCBI) nonredundant (nr) protein database of rice (Oryza sativa). Of these, the fore most differentially expressed group comprised 215 proteins that were primed following application of methyl jasmonate (MJ) and subsequent infection with the pathogen. Sixty-five proteins were down-regulated following MJ treatments. The application of benzothiadiazole (BTH) increased the expression of 23 proteins; however, subsequent infection with the pathogen repressed their expression and did not induce priming. The sorting of primed proteins by Gene Ontology protein function category revealed that the primed proteins included nucleic acid-binding proteins, cofactor-binding proteins, ion-binding proteins, transferases, hydrolases and oxidoreductases. In line with the highlighted involvement of oxidoreductases in the defence response, we determined their activities, priming pattern and localization in planta. Increased activities were confined to the area surrounding the pathogen penetration site, associating these enzymes with the induced systemic resistance afforded by the jasmonic acid signalling pathway. The results presented here demonstrate the concerted priming of protein expression following MJ treatment, making it a prominent part of the defence response of Z. aethiopica to P. carotovorum.
Collapse
|
7
|
Mora L, Bramley PM, Fraser PD. Development and optimisation of a label-free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit. Proteomics 2014; 13:2016-30. [PMID: 23616442 DOI: 10.1002/pmic.201200480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/01/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
Abstract
A key global challenge for plant biotechnology is addressing food security, whereby provision must be made to feed 9 billion people with nutritional feedstuffs by 2050. To achieve this step change in agricultural production new crop varieties are required that are tolerant to environmental stresses imposed by climate change, have better yields, are more nutritious and require less resource input. Genetic modification (GM) and marker-assisted screening will need to be fully utilised to deliver these new crop varieties. To evaluate these varieties both in terms of environmental and food safety and the rational design of traits a systems level characterisation is necessary. To link the transcriptome to the metabolome, quantitative proteomics is required. Routine quantitative proteomics is an important challenge. Gel-based densitometry and MS analysis after stable isotope labeling have been employed. In the present article, we describe the application of a label-free approach that can be used in combination with SDS-PAGE and reverse-phase chromatography to evaluate the changes in the proteome of new crop varieties. The workflow has been optimised for protein coverage, accuracy and robustness, then its application demonstrated using a GM tomato variety engineered to deliver nutrient dense fruit.
Collapse
Affiliation(s)
- Leticia Mora
- Centre for Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | | | | |
Collapse
|
8
|
Kang G, Li G, Ma H, Wang C, Guo T. Proteomic analysis on the leaves of TaBTF3 gene virus-induced silenced wheat plants may reveal its regulatory mechanism. J Proteomics 2013; 83:130-43. [PMID: 23563083 DOI: 10.1016/j.jprot.2013.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/26/2013] [Accepted: 03/19/2013] [Indexed: 01/01/2023]
Abstract
UNLABELLED Basic transcription factor 3 (BTF3) is involved in the transcriptional initiation of RNA polymerase II and is also associated with apoptosis. In this study, virus-induced gene silencing of TaBTF3 caused severe viral symptoms in wheat seedlings, which then displayed stunted growth, reduced height, and decreased total fresh and dry weights. A proteomic approach was further used to identify the protein species showing differential abundance between the TaBTF3 virus-induced gene silenced wheat plants and the barley stripe mosaic virus-induced gene silencing green fluorescent protein transgenic wheat plants (control) with the objective of exploring its regulatory mechanism in higher plants. Using two-dimensional electrophoresis technologies, 59 protein spots showed significant changes, of which 54 were successfully identified by tandem mass spectrometry with matrix-assisted laser desorption/ionization-time of flight spectrometry. Analysis of protein abundance revealed that the differential protein species were associated with signal transduction, stress defense, photosynthesis, carbohydrate metabolism, and protein metabolism, and were mostly localized in both chloroplasts and mitochondria. Furthermore, the BTF3-responsive protein interaction network revealed 20 key protein species, most of which are regulated by abscisic acid, ethane, or oxidative stress. This suggested that changes of these protein species could be critical in the BTF3 pathway. BIOLOGICAL SIGNIFICANCE Basic transcription factor 3 (BTF3), the β-subunit of NAC, has originally been identified as a basic transcription factor that is both involved in the transcriptional initiation of RNA polymerase II and associated with diverse biological functions. Reports on BTF3 mainly focus in animals, however, there has been limited molecular information about BTF3 in higher plants so far. In previous studies, we first isolated the TaBTF3 gene from common wheat (Triticum aestivum L.) and obtained silenced transgenic wheat seedlings using the VIGS method. In TaBTF3-silenced transgenic wheat plants, the structure of the wheat mesophyll cell was seriously damaged and transcripts of the chloroplast- and mitochondrial-encoded genes were significantly reduced. These results suggested that the TaBTF3 gene may be involved in regulating the growth and development of wheat seedlings. However, the induced or related genes by TaBTF3 have not been identified. The significance of this study is to first identify many protein species with the altered abundance between the TaBTF3 virus-induced silencing wheat plants and the BSMV-VIGS GFP transgenic wheat plants (control) using the proteomic approach. In addition, 20 of these identified protein species which might play critical roles in the BTF3 interaction network are identified using protein interaction network. These results help to further explore the molecular mechanism of BTF3 in higher plants.
Collapse
Affiliation(s)
- Guozhang Kang
- The National Engineering Research Centre for Wheat, The Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450002, China.
| | | | | | | | | |
Collapse
|