1
|
Plant-Specific Domains and Fragmented Sequences Imply Non-Canonical Functions in Plant Aminoacyl-tRNA Synthetases. Genes (Basel) 2020; 11:genes11091056. [PMID: 32906706 PMCID: PMC7564348 DOI: 10.3390/genes11091056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 12/01/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein translation. In addition, numerous aaRSs (mostly in vertebrates) have also been discovered to possess a range of non-canonical functions. Very few studies have been conducted to elucidate or characterize non-canonical functions of plant aaRSs. A genome-wide search for aaRS genes in Arabidopsis thaliana revealed a total of 59 aaRS genes. Among them, asparaginyl-tRNA synthetase (AsnRS) was found to possess a WHEP domain inserted into the catalytic domain in a plant-specific manner. This insertion was observed only in the cytosolic isoform. In addition, a long stretch of sequence that exhibited weak homology with histidine ammonia lyase (HAL) was found at the N-terminus of histidyl-tRNA synthetase (HisRS). This HAL-like domain has only been seen in plant HisRS, and only in cytosolic isoforms. Additionally, a number of genes lacking minor or major portions of the full-length aaRS sequence were found. These genes encode 14 aaRS fragments that lack key active site sequences and are likely catalytically null. These identified genes that encode plant-specific additional domains or aaRS fragment sequences are candidates for aaRSs possessing non-canonical functions.
Collapse
|
2
|
Zhang K, Yang W, Yu H, Fu C, Liu X, Liu J. Double mutation of BRF1 and BRF2 leads to sterility in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 516:969-975. [PMID: 31277948 DOI: 10.1016/j.bbrc.2019.06.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 01/22/2023]
Abstract
The TFIIB-related factor (BRF) family plays vital roles in RNA polymerase (Pol) III transcription initiation. However, little is known about the role of BRF in plants. Here, we report BRF1 and BRF2 are involved in Arabidopsis reproduction. In this study, we generated BRF1 and BRF2 double mutant plants. We found that no homozygous double mutants of brf1brf2 were obtained when brf1 and brf2 were crossed, although brf1 and brf2 mutants individually developed and reproduced normally. Further experiments revealed that heterozygous brf1/ + brf2/ + produced abnormal pollen and had no seeds in some placentas of siliques. Genetic data derived from reciprocal crosses showed that BRF2 plays a dominant role in Arabidopsis reproduction. Taken together, a double mutation of BRF1 and BRF2 results in a high degree of aborted macrogametes and microgametes and complete failure in zygote generation, ultimately leading to sterility.
Collapse
Affiliation(s)
- Kaiyue Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Wenwen Yang
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hongbin Yu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Can Fu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xiaxia Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jian Liu
- College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
3
|
Chloroplast-to-Nucleus Signaling Regulates MicroRNA Biogenesis in Arabidopsis. Dev Cell 2018; 48:371-382.e4. [PMID: 30595534 DOI: 10.1016/j.devcel.2018.11.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 10/15/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023]
Abstract
As integral regulators in plant development and stress response, microRNAs (miRNAs) themselves need to be tightly regulated. Here, we show that tocopherols (vitamin E), lipid-soluble antioxidants synthesized from tyrosine in chloroplasts, positively regulate the biogenesis of miRNAs. Tocopherols are required for the accumulation of 3'-phosphoadenosine 5'-phosphate (PAP), a retrograde inhibitor of the nuclear exoribonucleases (XRN), which may protect primary miRNAs from being degraded and promote mature miRNA production. Such regulation is involved in heat-induced accumulation of miR398 and plant acquisition of heat tolerance. Our study reveals a chloroplast-to-nucleus signaling mechanism that favors miRNA biogenesis under heat and possibly other environmental perturbations.
Collapse
|
4
|
Soprano AS, Smetana JHC, Benedetti CE. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:344-353. [PMID: 29222070 DOI: 10.1016/j.bbagrm.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Abstract
The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|
5
|
Zhang YY, Hao YY, Wang YH, Wang CM, Wang YL, Long WH, Wang D, Liu X, Jiang L, Wan JM. Lethal albinic seedling, encoding a threonyl-tRNA synthetase, is involved in development of plastid protein synthesis system in rice. PLANT CELL REPORTS 2017; 36:1053-1064. [PMID: 28405745 DOI: 10.1007/s00299-017-2136-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/27/2017] [Indexed: 05/26/2023]
Abstract
An albinic rice is caused by mutation of threonyl-tRNA synthetase, which is essential for plant development by stabilizing of NEP and PEP gene expressions and chloroplast protein synthesis. Chloroplast biogenesis and development depend on complex genetic mechanisms. Apart from their function in translation, aminoacyl-tRNA synthetases (aaRSs) play additional role in gene expression regulation, RNA splicing, and cytokine activity. However, their detailed functions in plant development are still poorly understood. We isolated a lethal albinic seedling (las) mutant in rice. Physiological and ultrastructural analysis of las mutant plants revealed weak chlorophyll fluorescence, negligible chlorophyll accumulation, and defective thylakoid membrane development. By map based cloning we determined that the LAS allele gene encodes threonyl-tRNA synthetase (ThrRS). LAS was constitutively expressed with relatively high level in leaves. NEP-dependent gene transcripts accumulated in the developing chloroplasts, while PEP-dependent transcripts were reduced in the las mutant. This result indicated that PEP activity was impaired. Chloroplast-encoded protein levels were sharply reduced in the las mutant. Biogenesis of chloroplast rRNAs (16S and 23S rRNA) was arrested, leading to impaired translation and protein synthesis. Together, our findings indicated that LAS is essential not only for chloroplast development by stabilizing the NEP and PEP gene expression, but also for protein synthesis and construction of the ribosome system in rice chloroplasts.
Collapse
Affiliation(s)
- Yuan-Yan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Yuan Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Hua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Ming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yun-Long Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wu-Hua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Min Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Deng Y, Zou W, Li G, Zhao J. TRANSLOCASE OF THE INNER MEMBRANE9 and 10 are essential for maintaining mitochondrial function during early embryo cell and endosperm free nucleus divisions in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:853-68. [PMID: 25104724 PMCID: PMC4213113 DOI: 10.1104/pp.114.242560] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In the life cycle of flowering plants, the sporophytic generation takes up most of the time and plays a dominant role in influencing plant growth and development. The embryo cell and endosperm free nucleus divisions establish the critical initiation phase of early sporophyte development, which forms mature seeds through a series of cell growth and differentiation events. Here, we report on the biological functions of two Arabidopsis (Arabidopsis thaliana) mitochondrial proteins, TRANSLOCASE OF THE INNER MEMBRANE9 (TIM9) and TIM10. We found that dysfunction of either AtTIM9 or AtTIM10 led to an early sporophyte-lethal phenotype; the embryo and endosperm both arrest division when the embryo proper developed to 16 to 32 cells. The abortion of tim9-1 and tim10 embryos at the 16/32-cell stage was caused by the loss of cell viability and the cessation of division in the embryo proper region, and this inactivation was due to the collapse of the mitochondrial structure and activity. Our characterization of tim9-1 and tim10 showed that mitochondrial membrane permeability increased and that cytochrome c was released from mitochondria into the cytoplasm in the 16/32-cell embryo proper, indicating that mitochondrial dysfunction occurred in the early sporophytic cells, and thus caused the initiation of a necrosis-like programmed cell death, which was further proved by the evidence of reactive oxygen species and DNA fragmentation tests. Consequently, we verified that AtTIM9 and AtTIM10 are nonredundantly essential for maintaining the mitochondrial function of early embryo proper cells and endosperm-free nuclei; these proteins play critically important roles during sporophyte initiation and development in Arabidopsis.
Collapse
Affiliation(s)
- Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|