1
|
Sergeeva A, Davydova K, Perenkov A, Vedunova M. Mechanisms of human DNA methylation, alteration of methylation patterns in physiological processes and oncology. Gene 2023:147487. [PMID: 37211289 DOI: 10.1016/j.gene.2023.147487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
DNA methylation is one of the epigenetic modifications of the genome, the essence of which is the attachment of a methyl group to nitrogenous bases. In the eukaryote genome, cytosine is methylated in the vast majority of cases. About 98% of cytosines are methylated as part of CpG dinucleotides. They, in turn, form CpG islands, which are clusters of these dinucleotides. Islands located in the regulatory elements of genes are in particular interest. They are assumed to play an important role in the regulation of gene expression in humans. Besides that, cytosine methylation serves the functions of genomic imprinting, transposon suppression, epigenetic memory maintenance, X- chromosome inactivation, and embryonic development. Of particular interest are the enzymatic processes of methylation and demethylation. The methylation process always depends on the work of enzymatic complexes and is very precisely regulated. The methylation process largely depends on the functioning of three groups of enzymes: writers, readers and erasers. Writers include proteins of the DNMT family, readers are proteins containing the MBD, BTB/POZ or SET- and RING-associated domains and erasers are proteins of the TET family. Whereas demethylation can be performed not only by enzymatic complexes, but also passively during DNA replication. Hence, the maintenance of DNA methylation is important. Changes in methylation patterns are observed during embryonic development, aging, and cancers. In both aging and cancer, massive hypomethylation of the genome with local hypermethylation is observed. In this review, we will review the current understanding of the mechanisms of DNA methylation and demethylation in humans, the structure and distribution of CpG islands, the role of methylation in the regulation of gene expression, embryogenesis, aging, and cancer development.
Collapse
Affiliation(s)
- A Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - K Davydova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - A Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - M Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
2
|
Systems Drug Design for Muscle Invasive Bladder Cancer and Advanced Bladder Cancer by Genome-Wide Microarray Data and Deep Learning Method with Drug Design Specifications. Int J Mol Sci 2022; 23:ijms232213869. [PMID: 36430344 PMCID: PMC9692470 DOI: 10.3390/ijms232213869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Bladder cancer is the 10th most common cancer worldwide. Due to the lack of understanding of the oncogenic mechanisms between muscle-invasive bladder cancer (MIBC) and advanced bladder cancer (ABC) and the limitations of current treatments, novel therapeutic approaches are urgently needed. In this study, we utilized the systems biology method via genome-wide microarray data to explore the oncogenic mechanisms of MIBC and ABC to identify their respective drug targets for systems drug discovery. First, we constructed the candidate genome-wide genetic and epigenetic networks (GWGEN) through big data mining. Second, we applied the system identification and system order detection method to delete false positives in candidate GWGENs to obtain the real GWGENs of MIBC and ABC from their genome-wide microarray data. Third, we extracted the core GWGENs from the real GWGENs by selecting the significant proteins, genes and epigenetics via the principal network projection (PNP) method. Finally, we obtained the core signaling pathways from the corresponding core GWGEN through the annotations of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway to investigate the carcinogenic mechanisms of MIBC and ABC. Based on the carcinogenic mechanisms, we selected the significant drug targets NFKB1, LEF1 and MYC for MIBC, and LEF1, MYC, NOTCH1 and FOXO1 for ABC. To design molecular drug combinations for MIBC and ABC, we employed a deep neural network (DNN)-based drug-target interaction (DTI) model with drug specifications. The DNN-based DTI model was trained by drug-target interaction databases to predict the candidate drugs for MIBC and ABC, respectively. Subsequently, the drug design specifications based on regulation ability, sensitivity and toxicity were employed as filter criteria for screening the potential drug combinations of Embelin and Obatoclax for MIBC, and Obatoclax, Entinostat and Imiquimod for ABC from their candidate drugs. In conclusion, we not only investigated the oncogenic mechanisms of MIBC and ABC, but also provided promising therapeutic options for MIBC and ABC, respectively.
Collapse
|
3
|
Wu Y, Cai Y, Ma L, Li F, Zhang M, Wang Y, Zheng F, Pi Z, Yue H. Identification and chemical profiling of anti-alcoholic liver disease biomarkers of ginseng Huang jiu using UPLC-Q-Orbitrap-HRMS and network pharmacology-based analyses. Front Nutr 2022; 9:978122. [PMID: 36034901 PMCID: PMC9412739 DOI: 10.3389/fnut.2022.978122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
This study investigated the mechanism of characteristic non-volatile organic compounds (NVOCs) from ginseng Huang jiu (GH) in the treatment of alcoholic liver disease through UPLC-Q-Orbitrap-HRMS and network pharmacological analyses. Changes in NVOC contents in ginseng Huang jiu and ginseng-soaked wine fermented by different processing technologies were analyzed through liquid chromatography–mass spectrometry (LC-MS). A total of 96 ginsenosides were identified in ginseng Huang jiu throughout the fermentation process, which included 37 protopanaxadiol-type ginsenosides, 47 protopanaxatriol-type ginsenosides, and 4 oleanolic acid-type ginsenosides. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed that 20(R)-Rg2, Gypenoside XVII, 20(S)-Rf3, CK, Rg5, Rh2, and other rare ginsenosides in ginseng Huang jiu could be the potential index for determining ginseng Huang jiu. In addition, ginseng Huang jiu could improve alcoholic liver disease by regulating the GSTP1, HRAS, AKR1B1, GSTA1, Androgen receptor (AR), GSR, and LDHB genes through bioinformatics analysis. This study provides new insights into improving the industrial production of ginseng Huang jiu and treating alcoholic liver disease with medicinal and food products.
Collapse
Affiliation(s)
- Yongxi Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Yongyu Cai
- Changchun University of Chinese Medicine, Changchun, China
| | - Liting Ma
- Changchun University of Chinese Medicine, Changchun, China
| | - Fangtong Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Meiyu Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yizhu Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Tripathi K, Goel A, Singhai A, Garg M. Promoter hypomethylation as potential confounder of Ras gene overexpression and their clinical significance in subsets of urothelial carcinoma of bladder. Mol Biol Rep 2021; 48:2183-2199. [PMID: 33620658 DOI: 10.1007/s11033-021-06227-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Overexpression of normal Ras and its aberrant CpG island methylation in the promoter regions have been shown to direct cells for uncontrolled abnormal growth and bladder tumor formation and therefore, fetched recent attention as a marker of diagnosis and prognosis to predict the biological behavior of urothelial carcinoma of bladder (UCB). Methylation pattern at CpG islands of the promoter regions of rat sarcoma (Ras) gene homologues namely Kristen-Ras (K-Ras), Harvey (H-Ras), and Neuroblastoma (N-Ras) were examined by methylation specific polymerase chain reaction (MSP). Real time-quantitative polymerase chain reaction (RT-qPCR) was done to determine transcriptomic expressions of these Ras isoforms in the prospective series of 42 NMIBC (non-muscle invasive bladder cancer) and 45 MIBC (muscle invasive bladder cancer) biopsies. CpG loci in H-Ras and K-Ras were observed to be more hypomethylated in MIBC, whereas more hypomethylation in N-Ras was noted in NMIBC. Strong association of hypomethylation index with tumor stage, grade, type and size validate them it as marker of diagnosis in UCB patients. Differential overexpression of H-Ras, N-Ras and K-Ras genes in NMIBC and MIBC and their association with patients' demographics identify them as important diagnostic markers in pathogenesis of UCB. Given the reported ability of promoter hypomethylation to activate Ras expression, correlation studies examined positive significant association between hypomethylation index and expression. Study concludes that promoter hypomethylation of N-Ras and K-Ras could be a potential confounder of their increased expression in NMIBC. Biological significance of simultaneous presence of higher expression and promoter hypomethylation of Ras gene isoforms in MIBC is difficult to resolve in a given cohort of patients.
Collapse
Affiliation(s)
- Kiran Tripathi
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Apul Goel
- Department of Urology, King George Medical University, Lucknow, 226003, India
| | - Atin Singhai
- Department of Pathology, King George Medical University, Lucknow, 226003, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
5
|
Hill SY, Rompala G, Homanics GE, Zezza N. Cross-generational effects of alcohol dependence in humans on HRAS and TP53 methylation in offspring. Epigenomics 2017; 9:1189-1203. [PMID: 28799801 DOI: 10.2217/epi-2017-0052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM We hypothesized that cross-generational effects of alcohol exposure could alter DNA methylation and expression of the HRAS oncogene and TP53 tumor suppressor gene that drive cancer development. METHODS DNA methylation of the HRAS and TP53 genes was tested in samples from young participants (Mean age of 13.4 years). RESULTS Controlling for both personal use and maternal use of substances during pregnancy, familial alcohol dependence was associated with hypomethylation of CpG sites in the HRAS promoter region and hypermethylation of the TP53 gene. CONCLUSION The results suggest that ancestral exposure to alcohol can have enduring effects that impact epigenetic processes such as DNA methylation that controls expression of genes that drive cancer development such as HRAS and TP53.
Collapse
Affiliation(s)
- Shirley Y Hill
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gregory Rompala
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gregg E Homanics
- Departments of Anesthesiology & Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nicholas Zezza
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Fu L, Zhang S. RASSF1A promotes apoptosis and suppresses the proliferation of ovarian cancer cells. Int J Mol Med 2014; 33:1153-60. [PMID: 24573512 DOI: 10.3892/ijmm.2014.1671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/27/2014] [Indexed: 11/05/2022] Open
Abstract
As the most lethal gynecological malignancy, ovarian cancer has attracted much attention over the past few decades; however, the early detection of this malignancy has been largely unsuccessful. The aim of this study was to determine the effects of Ras-association domain family 1, isoform A (RASSF1A) on ovarian cancer and to elucidate the molecular mechanisms responsible for these effects. The expression of RASSF1A in different ovarian cancer cells was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The morphology, structure, apoptosis and proliferation of differently treated SKOV-3 cells were then analyzed using a fluorescence microscope, transmission electron microscope, flow cytometer and by western blot analysis, respectively. Moreover, the GSE14407 affymetrix microarray data were downloaded from the Gene Expression Omnibus database and the expression of RASSF1A was quantified by Spotfire DecisionSite software. A RASSF1A related protein-protein interaction (PPI) network was then constructed using STRING and Cytoscape software. Finally, DAVID was utilized to perform KEGG pathway enrichment analysis of the network. RASSF1A was expressed in the HO8910, HO8910PM cells and the SKOV-3 cells transfected with RASSF1A, whereas it was absent in the other SKOV-3 cells and OVCAR-3 cells. Additionally, compared with the other SKOV-3 cells, the nucleus of SKOV-3 cells transfected with RASSF1A was vacuolated, apoptosis was increased, and the expression of cyclin D1 and survivin was decreased (P<0.05), and that of p27 and caspase-3 was increased (P<0.01). Additionally, 10 genes, including serine/threonine kinase (STK)3, STK4, Harvey rat sarcoma viral oncogene homolog (HRAS) and cell division cycle 20 (CDC20), were found to have close interactions with RASSF1A in the PPI network. Finally, a total of 8 enriched pathways, such as bladder cancer, non-small cell lung cancer and pathways in cancer were identified. To our knowledge, this is the first study to explore the biological functions and the underlying mechanisms of action of RASSF1A in the development of ovarian cancer. Our findings may provide a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Lingjie Fu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shulan Zhang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|