1
|
Suprovych TM, Salyha YT, Suprovych MP, Fedorovych EI, Fedorovych VV, Chornyj IO. Genetic Polymorphism of BoLA-DRB3.2 Locus in Ukrainian Cattle Breeds. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Chaudhary Y, Khuntia P, Kaul R. Susceptibility to foot and mouth disease virus infection in vaccinated cattle, and host BoLA A and BoLA DRB3 genes polymorphism. Virusdisease 2022; 33:65-75. [PMID: 35493756 PMCID: PMC9005608 DOI: 10.1007/s13337-021-00754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022] Open
Abstract
The vaccination of the susceptible animal population against FMDV remains the most important measure to control the virus and prevent economic loss. Occurrence of infection in vaccinated animals is well-known in some diseases and is termed as breakthrough infection. The reasons include host genetic factors which can play an important role resulting in differences in susceptibility of animals to virus infection even with vaccine induced protective immune response. The Major Histocompatibility Complex (MHC) of bovines i.e. Bovine Leukocyte Antigen (BoLA) is important for antigen presentation. The BoLA DRB3 allele, which codes for the beta chain in Class II antigen, has been extensively studied and numerous reports have previously shown association of polymorphism in the gene with resistance/ susceptibility to several bacterial and viral diseases. In addition, previous studies have shown relationship between BoLA Class I and resistance or susceptibility to different diseases in cattle. The present study investigated the polymorphism in BoLA DRB3 and BoLA gene sequences of host and their relation with breakthrough FMDV infection in vaccinated animals. The study has identified three polymorphic sites each in both the genes which correlate with evidence of recent infection indicating their role in determining susceptibility of vaccinated animals to FMDV infection. Our limited study was performed on a relatively small samples size collected from one region of country. Further validation would require more detailed investigations on larger sample size. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00754-8.
Collapse
Affiliation(s)
- Yash Chaudhary
- grid.8195.50000 0001 2109 4999Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | | | - Rajeev Kaul
- grid.8195.50000 0001 2109 4999Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| |
Collapse
|
3
|
Lo CW, Takeshima SN, Okada K, Saitou E, Fujita T, Matsumoto Y, Wada S, Inoko H, Aida Y. Association of Bovine Leukemia Virus-Induced Lymphoma with BoLA-DRB3 Polymorphisms at DNA, Amino Acid, and Binding Pocket Property Levels. Pathogens 2021; 10:pathogens10040437. [PMID: 33917549 PMCID: PMC8067502 DOI: 10.3390/pathogens10040437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leucosis, a malignant B-cell lymphoma in cattle. The DNA sequence polymorphisms of bovine leukocyte antigen (BoLA)-DRB3 have exhibited a correlation with BLV-induced lymphoma in Holstein cows. However, the association may vary between different cattle breeds. Furthermore, little is known about the relationship between BLV-induced lymphoma and DRB3 at the amino acid and structural diversity levels. Here, we comprehensively analyzed the correlation between BLV-induced lymphoma and DRB3 at DNA, amino acid, and binding pocket property levels, using 106 BLV-infected asymptomatic and 227 BLV-induced lymphoma Japanese black cattle samples. DRB3*011:01 was identified as a resistance allele, whereas DRB3*005:02 and DRB3*016:01 were susceptibility alleles. Amino acid association studies showed that positions 9, 11, 13, 26, 30, 47, 57, 70, 71, 74, 78, and 86 were associated with lymphoma susceptibility. Structure and electrostatic charge modeling further indicated that binding pocket 9 of resistance DRB3 was positively charged. In contrast, alleles susceptible to lymphoma were neutrally charged. Altogether, this is the first association study of BoLA-DRB3 polymorphisms with BLV-induced lymphoma in Japanese black cattle. In addition, our results further contribute to understanding the mechanisms regarding how BoLA-DRB3 polymorphisms mediate susceptibility to BLV-induced lymphoma.
Collapse
Affiliation(s)
- Chieh-Wen Lo
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (C.-W.L.); (Y.M.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan
| | - Kosuke Okada
- Iwate University, 7-360 Mukai-shinden Ukai, Takizawa, Iwate 020-0667, Japan;
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji, Hyogo 656-0152, Japan;
| | - Tatsuo Fujita
- Livestock Research Institute of Oita Prefectural Agriculture, Forestry and Fisheries, Research Center, Kuju, Taketa, Oita 878-0201, Japan;
| | - Yasunobu Matsumoto
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (C.-W.L.); (Y.M.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan;
| | - Hidetoshi Inoko
- Genome Analysis Division, GenoDive Pharma Inc., 4-14-1 Nakamachi, Atsugi-shi, Kanagawa 243-0018, Japan;
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (C.-W.L.); (Y.M.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Benno Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Correspondence:
| |
Collapse
|
4
|
Suprovych TM, Suprovych MP, Kolinchuk RV, Karchevska TM, Chornyi IO, Kolodiy VA. Association of BoLA-DRB3.2 alleles with fusobacteriosis in cows. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The Major Histocompatability Complex (MHC) determines the immune response to pathogens, and its genes are promising candidates for the search of associations with diseases. A special role is played by BoLA-DRB3 gene, the product of which directly participates in the binding of alien antigens and conditions the specificity of the immune response. The second exon of this gene codes β1-domain of class II antigens, which is necessary for binding a broad spectrum of alien antigens. Exon 2 of BoLA-DRB3 gene is extremely polymorphic, giving the possibility to search the associations of its alleles with various diseases. The article provides the results of the study on polymorphism of alleles of BoLA-DRB3.2 gene for detection of its associations with sensitivity to fusobacteriosis (necrobacteriosis) of cows. The survey was performed using PCR-RFLP method with DNA of blood from 176 cows of two herds of Ukrainian black-and-white dairy breed. As a result of the studies, in the first herd, 25 BoLA-DRB3.2 alleles were found. In the selections of nectobacteriosis susceptible and resistant cows, we found 22 and 21 variants respectively. In the second herd, in the general selection and group of healthy animals, 27 alleles were typed, and 22 in the group of susceptible cows. BoLA-DRB3.2*22 allele was the commonest in both herds in both general selections and groups of nectobacteriosis-resistant cows. In the selection of susceptible animals, the commonest was the variant BoLA-DRB3.2*16. We determined statistically significant associations of BoLA-DRB3.2 alleles with sensitivity to nectobacteriosis of cattle. BoLA-DRB3.2*03 and *22 alleles associate with nectobacteriosis-resistant, while *16 and *23 – with nectobacteriosis-susceptible cows of the both studied groups. Also, in the first herd, another allele was found – *24, indicating close relationship with the disease. The studies of polymorphism of BoLA-DRB3 gene expand the knowledge about genetic peculiarities of the Ukrainian black-and-white dairy breed. The identified molecular-genetic markers could be useful for breeders whose work is oriented towards the formation of herds which are resistant to diseases of the limbs in cattle.
Collapse
|
5
|
Sharma AK, Bhatt M, Sankar M, Mohapatra JK, Dash BB, Gowane GR, Subramaniam S, Ranjan R, Pattnaik B. Kinetics of Interferon gamma and Interleukin-21 response following foot and mouth disease virus infection. Microb Pathog 2018; 125:20-25. [PMID: 30145254 DOI: 10.1016/j.micpath.2018.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Foot and mouth disease (FMD) is one of the most contagious diseases of cloven footed animals causing significant economic impediment in livestock production system. The immune response to FMD virus (FMDV) infection is regulated by a complex interplay between various cells, cytokines and other immune components. Based on the well established role of Interferon-gamma (IFN-γ) and Interleukin-21 (IL-21) in viral infections, this study aimed to determine expression level of these cytokines in clinically infected adults and calves; and the results were compared with those in the subclinically infected animals up to 120 days post outbreak (DPO) in a vaccinated cattle herd. The expression level of IFN-γ and IL-21 was assayed on 0, 7, 14, 28, 60, 90, and 120 DPO by enzyme linked immunosorbent assay (ELISA) with simultaneous assessment of FMDV structural protein-antibody titer against serotype 'O' by liquid phase blocking ELISA (LPBE) and nonstructural protein-antibody, a differential marker of infection, using r3AB3 indirect ELISA (r3AB3 I-ELISA). Although, the peak expression of IFN-γ was observed on 14 DPO across all categories of animals, the clinically infected animals registered a significant increase in IFN-γ level as compared to the subclinically infected population possibly due to the difference in the extent of virus replication and inflammation. The IL-21 level increased significantly during 14-28 DPO and highest expression was noticed on 28 DPO. The increase in the expression level of IFN-γ and IL-21 at 28 DPO correlated with the increase in antibody titer as determined by LPBE suggesting the role of these cytokines in augmenting immune response to FMDV infection.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- ICAR-Indian Veterinary Research Institute, Mukteswar Campus Uttarakhand, 263 138, India
| | - Mukesh Bhatt
- ICAR-Indian Veterinary Research Institute, Mukteswar Campus Uttarakhand, 263 138, India
| | - Muthu Sankar
- ICAR-Indian Veterinary Research Institute, Mukteswar Campus Uttarakhand, 263 138, India.
| | | | - Bana B Dash
- ICAR-Project Directorate of FMD, Mukteswar, Uttarakhand, 263 138, India
| | - Gopal R Gowane
- ICAR-Central Sheep & Wool Research Institute, Avikanagar, 304501, Rajasthan, India
| | | | - Rajeev Ranjan
- ICAR-Project Directorate of FMD, Mukteswar, Uttarakhand, 263 138, India
| | | |
Collapse
|
6
|
Five BoLA-DRB3 genotypes detected in Egyptian buffalo infected with Foot and Mouth disease virus serotype O. J Genet Eng Biotechnol 2018; 16:513-518. [PMID: 30733768 PMCID: PMC6353717 DOI: 10.1016/j.jgeb.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/18/2018] [Indexed: 11/21/2022]
Abstract
Foot and Mouth disease (FMD) is a contagious disease leads to economically loss in livestock production all over the world. This serious disease is caused due to the infection of the animal with a single-stranded RNA virus (FMDV). This study aimed to investigate the genetic polymorphism of BoLA-DRB3 gene in Egyptian buffalo as a candidate genetic marker included in multi-factorial process of FMD resistance/susceptibility. Also this work aimed to genetically characterization and serotyping of circulating FMD virus in Egypt during 2016. For serotyping of FMDV, RT-PCR was used for FMDV-positive samples and the results declared the presence of serotype O in all tested animals. The sequence analysis of FMDV samples revealed five different patterns for the detected serotype O which were submitted to GenBank under the accession Nos.: MG017361–MG017365. The 302-bp amplified fragments from BoLA-DRB3 exon 2 were digested with HaeIII endonuclease and the results showed that the presence of five BoLA-DRB3 genotypes, among them the genotype AA might be associated with FMD-resistance (P < 0.01). On the other hand, genotype AC could be correlated with susceptibility (P < 0.01) to FMD in Egyptian buffaloes where it was absent in resistant group. The five detected genotypes of BoLA-DRB3 exon 2 were submitted to GenBank with the accession Nos.: MF977316–MF977320. In conclusion, our findings suggested that the detection of different BoLA-DRB3 genotypes may be has a promising role for raising the resistance of Egyptian buffalo against FMDV especially serotype O which is prevalent in Egypt with preferring genotype AA.
Collapse
|
7
|
Manjeet, Pander BL, Sharma R, Dhaka SS, Magotra A, Dev K. Evaluation of genetic and non-genetic factors on foot and mouth disease (FMD) virus vaccine-elicited immune response in Hardhenu (Bos taurus x Bos indicus) cattle. Trop Anim Health Prod 2017; 49:1689-1695. [DOI: 10.1007/s11250-017-1379-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
8
|
Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD. Molecular markers for resistance against infectious diseases of economic importance. Vet World 2017; 10:112-120. [PMID: 28246455 PMCID: PMC5301170 DOI: 10.14202/vetworld.2017.112-120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022] Open
Abstract
Huge livestock population of India is under threat by a large number of endemic infectious (bacterial, viral, and parasitic) diseases. These diseases are associated with high rates of morbidity and mortality, particularly in exotic and crossbred cattle. Beside morbidity and mortality, economic losses by these diseases occur through reduced fertility, production losses, etc. Some of the major infectious diseases which have great economic impact on Indian dairy industries are tuberculosis (TB), Johne's disease (JD), mastitis, tick and tick-borne diseases (TTBDs), foot and mouth disease, etc. The development of effective strategies for the assessment and control of infectious diseases requires a better understanding of pathogen biology, host immune response, and diseases pathogenesis as well as the identification of the associated biomarkers. Indigenous cattle (Bos indicus) are reported to be comparatively less affected than exotic and crossbred cattle. However, genetic basis of resistance in indigenous cattle is not well documented. The association studies of few of the genes associated with various diseases, namely, solute carrier family 11 member 1, Toll-like receptors 1, with TB; Caspase associated recruitment domain 15, SP110 with JD; CACNA2D1, CD14 with mastitis and interferon gamma, BoLA--DRB3.2 alleles with TTBDs, etc., are presented. Breeding for genetic resistance is one of the promising ways to control the infectious diseases. High host resistance is the most important method for controlling such diseases, but till today no breed is total immune. Therefore, work may be undertaken under the hypothesis that the different susceptibility to these diseases are exhibited by indigenous and crossbred cattle is due to breed-specific differences in the dealing of infected cells with other immune cells, which ultimately influence the immune response responded against infections. Achieving maximum resistance to these diseases is the ultimate goal, is technically possible to achieve, and is permanent. Progress could be enhanced through introgression of resistance genes to breeds with low resistance. The quest for knowledge of the genetic basis for infectious diseases in indigenous livestock is strongly warranted.
Collapse
Affiliation(s)
- B. M. Prajapati
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - J. P. Gupta
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - D. P. Pandey
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - G. A. Parmar
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| | - J. D. Chaudhari
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385 506, Gujarat, India
| |
Collapse
|
9
|
Singh R, Deb R, Singh U, Alex R, Kumar S, Chakraborti S, Sharma S, Sengar G, Singh R. Development of a tetra-primer ARMS PCR-based assay for detection of a novel single-nucleotide polymorphism in the 5' untranslated region of the bovine ITGB6 receptor gene associated with foot-and-mouth disease susceptibility in cattle. Arch Virol 2014; 159:3385-9. [PMID: 25078391 DOI: 10.1007/s00705-014-2194-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
Abstract
ITGB6 is known to be one of the major receptor components involved in host tropism of foot-and-mouth disease (FMD) virus in cattle. A competitive PCR technique called ARMS PCR was adapted to identify a single-nucleotide polymorphism (SNP), G29A, db SNP Id: rs109075046, in the 5' untranslated region (5'UTR) of the bovine ITGB6 gene. Genotype profiling identified three kinds of genetic variation within the targeted SNP among Frieswal crossbred cattle. The occurrence of FMD in the three genotypes was further evaluated, revealing a clear role in the incidence of FMD in the studied population.
Collapse
Affiliation(s)
- Rani Singh
- Molecular Genetic Laboratory, Animal Genetic and Breeding Division, Central Institute for Research on Cattle (formerly Project Directorate on Cattle), Meerut Cantt, 250001, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Singh U, Deb R, Alyethodi RR, Alex R, Kumar S, Chakraborty S, Dhama K, Sharma A. Molecular markers and their applications in cattle genetic research: A review. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bgm.2014.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Giovambattista G, Takeshima SN, Ripoli MV, Matsumoto Y, Franco LAA, Saito H, Onuma M, Aida Y. Characterization of bovine MHC DRB3 diversity in Latin American Creole cattle breeds. Gene 2013; 519:150-8. [DOI: 10.1016/j.gene.2013.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/30/2012] [Accepted: 01/04/2013] [Indexed: 01/23/2023]
|