1
|
Wang X, Holthauzen LMF, Paz-Villatoro JM, Bien KG, Yu B, Iwahara J. Phosphorylation by Protein Kinase C Weakens DNA-Binding Affinity and Folding Stability of the HMGB1 Protein. Biochemistry 2024; 63:1718-1722. [PMID: 38916994 PMCID: PMC11282465 DOI: 10.1021/acs.biochem.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The HMGB1 protein typically serves as a DNA chaperone that assists DNA-repair enzymes and transcription factors but can translocate from the nucleus to the cytoplasm or even to extracellular space upon some cellular stimuli. One of the factors that triggers the translocation of HMGB1 is its phosphorylation near a nuclear localization sequence by protein kinase C (PKC), although the exact modification sites on HMGB1 remain ambiguous. In this study, using spectroscopic methods, we investigated the HMGB1 phosphorylation and its impact on the molecular properties of the HMGB1 protein. Our nuclear magnetic resonance (NMR) data on the full-length HMGB1 protein showed that PKC specifically phosphorylates the A-box domain, one of the DNA binding domains of HMGB1. Phosphorylation of S46 and S53 was particularly efficient. Over a longer reaction time, PKC phosphorylated some additional residues within the HMGB1 A-box domain. Our fluorescence-based binding assays showed that the phosphorylation significantly reduces the binding affinity of HMGB1 for DNA. Based on the crystal structures of HMGB1-DNA complexes, this effect can be ascribed to electrostatic repulsion between the negatively charged phosphate groups at the S46 side chain and DNA backbone. Our data also showed that the phosphorylation destabilizes the folding of the A-box domain. Thus, phosphorylation by PKC weakens the DNA-binding affinity and folding stability of HMGB1.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Luis Marcelo F. Holthauzen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Jonathan M Paz-Villatoro
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Karina G. Bien
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
2
|
The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021; 10:cells10051044. [PMID: 33925132 PMCID: PMC8145631 DOI: 10.3390/cells10051044] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
High mobility group box-1 protein (HMGB1), a member of the high mobility group protein superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells, contributing to the excessive release of inflammatory cytokines and promoting processes such as cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern molecule that participates in various inflammatory and immune responses. In these ways, it plays a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects of HMGB1 on various immune cell types and describe the molecular mechanisms by which it contributes to the development of inflammatory disorders. Finally, we address the therapeutic potential of targeting HMGB1.
Collapse
|
3
|
Kim YM, Park EJ, Kim JH, Park SW, Kim HJ, Chang KC. Ethyl pyruvate inhibits the acetylation and release of HMGB1 via effects on SIRT1/STAT signaling in LPS-activated RAW264.7 cells and peritoneal macrophages. Int Immunopharmacol 2016; 41:98-105. [PMID: 27865166 DOI: 10.1016/j.intimp.2016.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 01/31/2023]
Abstract
High mobility group box 1 (HMGB1), a cytokine present in the late phase of sepsis, may be a potential target for the treatment of sepsis. For HMGB1 to be actively secreted from macrophages during infections, it must be post-translationally modified. Although ethyl pyruvate (EP), a simple aliphatic ester derived from pyruvic acid, has been shown to inhibit the release of HMGB1 in lipopolysaccharide (LPS)-treated RAW 264.7 cells, the underlying mechanism(s) are not yet clear. We investigated the hypothesis that the upregulation of SIRT1 by EP might promote the deacetylation of HMGB1, which reduces HMGB1 release in LPS-activated macrophages. Our results show that EP induced the expression of the SIRT1 protein in RAW264.7 cells and that it significantly inhibited the LPS-induced acetylation of HMGB1. Transfection with a SIRT1-overexpressing vector resulted in a significant decrease in the acetylation of HMGB1 in LPS-activated RAW264.7 cells relative to control cells. The genetic ablation or the pharmacological inhibition of SIRT1 by sirtinol increased LPS-induced HMGB1 acetylation. Moreover, EP inhibited the acetylation of HMGB1 in peritoneal macrophages treated with LPS. Interestingly, EP significantly reduced the LPS-induced phosphorylation of STAT1, which was significantly reversed by siSIRT1 transfection in RAW264.7 cells, indicating that SIRT1 negatively regulates the phosphorylation of STAT1. Overall, the results show that EP promotes the deacetylation of HMGB1 via the inhibition of STAT1 phosphorylation through the upregulation of SIRT1, which reduces HMGB1 release in LPS-activated RAW264.7 cells. In conclusion, EP might be useful in the treatment of diseases that target HMGB1, such as sepsis.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Eun Jung Park
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Jung Hwan Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Ki Churl Chang
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea; Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 660-751, Republic of Korea.
| |
Collapse
|
4
|
Andersson A, Bluwstein A, Kumar N, Teloni F, Traenkle J, Baudis M, Altmeyer M, Hottiger MO. PKCα and HMGB1 antagonistically control hydrogen peroxide-induced poly-ADP-ribose formation. Nucleic Acids Res 2016; 44:7630-45. [PMID: 27198223 PMCID: PMC5027479 DOI: 10.1093/nar/gkw442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/06/2016] [Indexed: 12/20/2022] Open
Abstract
Harmful oxidation of proteins, lipids and nucleic acids is observed when reactive oxygen species (ROS) are produced excessively and/or the antioxidant capacity is reduced, causing ‘oxidative stress’. Nuclear poly-ADP-ribose (PAR) formation is thought to be induced in response to oxidative DNA damage and to promote cell death under sustained oxidative stress conditions. However, what exactly triggers PAR induction in response to oxidative stress is incompletely understood. Using reverse phase protein array (RPPA) and in-depth analysis of key stress signaling components, we observed that PAR formation induced by H2O2 was mediated by the PLC/IP3R/Ca2+/PKCα signaling axis. Mechanistically, H2O2-induced PAR formation correlated with Ca2+-dependent DNA damage, which, however, was PKCα-independent. In contrast, PAR formation was completely lost upon knockdown of PKCα, suggesting that DNA damage alone was not sufficient for inducing PAR formation, but required a PKCα-dependent process. Intriguingly, the loss of PAR formation observed upon PKCα depletion was overcome when the chromatin structure-modifying protein HMGB1 was co-depleted with PKCα, suggesting that activation and nuclear translocation of PKCα releases the inhibitory effect of HMGB1 on PAR formation. Together, these results identify PKCα and HMGB1 as important co-regulators involved in H2O2-induced PAR formation, a finding that may have important relevance for oxidative stress-associated pathophysiological conditions.
Collapse
Affiliation(s)
- Anneli Andersson
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Molecular Life Sciences PhD Program, Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andrej Bluwstein
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Cancer Biology PhD Program, Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nitin Kumar
- Institute of Molecular Life Science (IMLS) and Swiss Institute of Bioinformatics (SIB), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Molecular Life Sciences PhD Program, Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jens Traenkle
- Bayer Technology Services GmbH, D-51368 Leverkusen, Germany
| | - Michael Baudis
- Institute of Molecular Life Science (IMLS) and Swiss Institute of Bioinformatics (SIB), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
5
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 704] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|