1
|
Parvin A, Erabi G, Alemi A, Rezanezhad A, Maleksabet A, Sadeghpour S, Taheri-Anganeh M, Ghasemnejad-Berenji H. Seminal plasma proteomics as putative biomarkers for male infertility diagnosis. Clin Chim Acta 2024; 561:119757. [PMID: 38857670 DOI: 10.1016/j.cca.2024.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Male infertility represents a significant global public health issue that is currently emerging as a prominent research focus. Presently, laboratories adhere to the guidelines outlined by the World Health Organization (WHO) manuals for conducting routine semen analysis to diagnose male infertility. However, the accuracy of results in predicting sperm quality and fertility is limited because some individuals with a normal semen analysis report, an unremarkable medical history, and a physical examination may still experience infertility. As a result, the importance of employing more advanced techniques to investigate sperm function and male fertility in the treatment of male infertility and/or subfertility becomes apparent. The standard test for evaluating human semen has been improved by more complex tests that look at things like reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), sperm DNA fragmentation levels, DNA compaction, apoptosis, genetic testing, and the presence and location of anti-sperm antibodies. Recent discoveries of novel biomarkers have significantly enriched our understanding of male fertility. Moreover, the notable biological diversity among samples obtained from the same individual complicates the efficacy of routine semen analysis. Therefore, unraveling the molecular mechanisms involved in fertilization is pivotal in expanding our understanding of factors contributing to male infertility. By understanding how these proteins work and what role they play in sperm activity, we can look at the expression profile in men who can't have children to find diagnostic biomarkers. This review examines the various sperm and seminal plasma proteins associated with infertility, as well as proteins that are either deficient or exhibit aberrant expression, potentially contributing to male infertility causes.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Alemi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arman Rezanezhad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Wu C, Wang C, Zhai B, Zhao Y, Zhao Z, Yuan Z, Fu X, Zhang M. Study on the region-specific expression of epididymis mRNA in the rams. PLoS One 2021; 16:e0245933. [PMID: 33493206 PMCID: PMC7833257 DOI: 10.1371/journal.pone.0245933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/10/2021] [Indexed: 11/19/2022] Open
Abstract
The epididymis is divided into three regions including the caput, corpus and cauda. Gene expression profiles in different regions indicate the different functions of epididymis which are crucial for sperm maturation. In this study, three one-year-old rams was used as the experimental animal. Transcriptome sequencing technology was used to sequence mRNA in the caput, corpus and cauda of the epididymis. Based on the spatiotemporal-specific expression pattern in the epididymis, the mRNA expression profiles of the three parts of the epididymis were analysed. Region-specifically expressed genes were analysed by GO and KEGG analyses to screen the key genes involved in sheep sperm maturation. We obtained 129, 54 and 99 specifically expressed genes in the caput, corpus and cauda, respectively. And twenty specific expressed genes related to sperm maturation were used to construct functional networks. The heatmap showed that 6 genes of LCN protein family were highly expressed in the head of epididymis of sheep. We infer that sperm maturation is gradual in the epididymis and that there are significant differences in epididymal gene expression patterns between different species. This provides a data resource for analysing the regulatory mechanism of epididymis genes related to sperm maturation in rams.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep & Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Chunxin Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Bo Zhai
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yunhui Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhuo Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep & Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
- * E-mail: (XF); (MZ)
| | - Mingxin Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- * E-mail: (XF); (MZ)
| |
Collapse
|
3
|
Greither T, Schumacher J, Dejung M, Behre HM, Zischler H, Butter F, Herlyn H. Fertility Relevance Probability Analysis Shortlists Genetic Markers for Male Fertility Impairment. Cytogenet Genome Res 2020; 160:506-522. [PMID: 33238277 DOI: 10.1159/000511117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Impairment of male fertility is one of the major public health issues worldwide. Nevertheless, genetic causes of male sub- and infertility can often only be suspected due to the lack of reliable and easy-to-use routine tests. Yet, the development of a marker panel is complicated by the large quantity of potentially predictive markers. Actually, hundreds or even thousands of genes could have fertility relevance. Thus, a systematic method enabling a selection of the most predictive markers out of the many candidates is required. As a criterion for marker selection, we derived a gene-specific score, which we refer to as fertility relevance probability (FRP). For this purpose, we first categorized 2,753 testis-expressed genes as either candidate markers or non-candidates, according to phenotypes in male knockout mice. In a parallel approach, 2,502 genes were classified as candidate markers or non-candidates based on phenotypes in men. Subsequently, we conducted logistic regression analyses with evolutionary rates of genes (dN/dS), transcription levels in testis relative to other organs, and connectivity of the encoded proteins in a protein-protein interaction network as covariates. In confirmation of the procedure, FRP values showed the expected pattern, thus being overall higher in genes with known relevance for fertility than in their counterparts without corresponding evidence. In addition, higher FRP values corresponded with an increased dysregulation of protein abundance in spermatozoa of 37 men with normal and 38 men with impaired fertility. Present analyses resulted in a ranking of genes according to their probable predictive power as candidate markers for male fertility impairment. Thus, AKAP4, TNP1, DAZL, BRDT, DMRT1, SPO11, ZPBP, HORMAD1, and SMC1B are prime candidates toward a marker panel for male fertility impairment. Additional candidate markers are DDX4, SHCBP1L, CCDC155, ODF1, DMRTB1, ASZ1, BOLL, FKBP6, SLC25A31, PRSS21, and RNF17. FRP inference additionally provides clues for potential new markers, thereunder TEX37 and POU4F2. The results of our logistic regression analyses are freely available at the PreFer Genes website (https://prefer-genes.uni-mainz.de/).
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Julia Schumacher
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mario Dejung
- Quantitative Proteomics, Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hans Zischler
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany,
| |
Collapse
|
4
|
Sturm S, Dowle A, Audsley N, Isaac RE. The structure of the Drosophila melanogaster sex peptide: Identification of hydroxylated isoleucine and a strain variation in the pattern of amino acid hydroxylation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103414. [PMID: 32589920 DOI: 10.1016/j.ibmb.2020.103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In Drosophila melanogaster mating triggers profound changes in the behaviour and reproductive physiology of the female. Many of these post-mating effects are elicited by sex peptide (SP), a 36-mer pheromone made in the male accessory gland and passed to the female in the seminal fluid. The peptide comprises several structurally and functionally distinct domains, one of which consists of five 4-hydroxyprolines and induces a female immune response. The SP gene predicts an isoleucine (Ile14) sandwiched between two of the hydroxyprolines of the mature secreted peptide, but the identity of this residue was not established by peptide sequencing and amino acid analysis, presumably because of modification of the side chain. Here we have used matrix-assisted laser desorption ionisation mass spectrometry together with Fourier-transform ion cyclotron resonance mass spectrometry to show that Ile14 is modified by oxidation of the side chain - a very unusual post-translational modification. Mass spectrometric analysis of glands from different geographical populations of male D. melanogaster show that SP with six hydroxylated side chains is the most common form of the peptide, but that a sub-strain of Canton-S flies held at Leeds only has two or three hydroxylated prolines and an unmodified Ile14. The D. melanogaster genome has remarkably 17 putative hydroxylase genes that are strongly and almost exclusively expressed in the male accessory gland, suggesting that the gland is a powerhouse of protein oxidation. Strain variation in the pattern of sex peptide hydroxylation might be explained by differences in the expression of individual hydroxylase genes.
Collapse
Affiliation(s)
- Sebastian Sturm
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil Audsley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
5
|
Somashekar L, Selvaraju S, Parthipan S, Patil SK, Binsila BK, Venkataswamy MM, Karthik Bhat S, Ravindra JP. Comparative sperm protein profiling in bulls differing in fertility and identification of phosphatidylethanolamine-binding protein 4, a potential fertility marker. Andrology 2017; 5:1032-1051. [DOI: 10.1111/andr.12404] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/27/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- L. Somashekar
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
- Department of Biochemistry; Jain University; Bengaluru India
| | - S. Selvaraju
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
| | - S. Parthipan
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
- Department of Biochemistry; Jain University; Bengaluru India
| | - S. K. Patil
- Department of Anatomy and Histology; Veterinary College; Bengaluru India
| | - B. K. Binsila
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
| | - M. M. Venkataswamy
- Neurobiology Research Centre; Department of Neurovirology; National Institute of Mental Health and Neurosciences; Bengaluru India
| | - S. Karthik Bhat
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
| | - J. P. Ravindra
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
| |
Collapse
|
6
|
Machtinger R, Rodosthenous RS, Adir M, Mansour A, Racowsky C, Baccarelli AA, Hauser R. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J Assist Reprod Genet 2017; 34:525-533. [PMID: 28188594 DOI: 10.1007/s10815-017-0876-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The purpose of this study is to determine the profile of extracellular microRNAs (exmiRNAs) in follicular fluid (FF) and explore their association with fertilization potential and embryo quality. METHODS We collected FF from single follicles containing mature oocytes from 40 women undergoing IVF and we screened for the expression of 754 exmiRNAs in FF using the TaqMan OpenArray® qPCR platform. To determine the association of exmiRNAs and IVF outcomes, we compared their expression levels in FF samples that differ by fertilization status (normally, abnormally, and failed to fertilize) and embryo quality (top vs. non-top). RESULTS We detected 207 exmiRNAs, of which miR-30d-5p, miR-320b, miR-10b-3p, miR-1291, and miR-720 were most prevalent. We identified four exmiRNAs with significant fold change (FC) when FF that contained normally fertilized was compared to failed to fertilize oocytes [miR-202-5p (FC = 1.82, p = 0.01), miR-206 (FC = 2.09, p = 0.04), miR-16-1-3p (FC = 1.88, p = 0.05), and miR-1244 (FC = 2.72, p = 0.05)]. We also found four exmiRNAs to be significantly differentially expressed in FF that yielded top quality versus non-top quality embryos [(miR-766-3p (FC = 1.95, p = 0.01), miR-663b (FC = 0.18, p = 0.02), miR-132-3p (FC = 2.45, p = 0.05), and miR-16-5p (FC = 3.80, p = 0.05)]. In-silico analysis revealed that several of these exmiRNAs are involved in pathways implicated in reproductive system diseases, organismal abnormalities, and organ development. CONCLUSIONS Our findings suggest that exmiRNAs in the follicular fluid can lead to downstream events that will affect fertilization and day 3 embryo morphology. We encourage further observational and experimental studies to confirm our findings and to determine the role of exmiRNAs in human reproduction.
Collapse
Affiliation(s)
- Ronit Machtinger
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan and Sackler School of Medicine Tel- Aviv University, Tel Aviv, Israel.
| | | | - Michal Adir
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan and Sackler School of Medicine Tel- Aviv University, Tel Aviv, Israel
| | - Abdallah Mansour
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan and Sackler School of Medicine Tel- Aviv University, Tel Aviv, Israel
| | - Catherine Racowsky
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea A Baccarelli
- Human Epigenetics Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Camargo M, Intasqui P, Bertolla RP. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele. Asian J Androl 2016; 18:194-201. [PMID: 26643563 PMCID: PMC4770485 DOI: 10.4103/1008-682x.168788] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Varicocele, the most important treatable cause of male infertility, is present in 15% of adult males, 35% of men with primary infertility, and 80% of men with secondary infertility. On the other hand, 80% of these men will not present infertility. Therefore, there is a need to differentiate a varicocele that is exerting a deleterious effect that is treatable from a “silent” varicocele. Despite the growing evidence of the cellular effects of varicocele, its underlying molecular mechanisms are still eluding. Proteomics has become a promising area to determine the reproductive biology of semen as well as to improve diagnosis of male infertility. This review aims to discuss the state-of-art in seminal plasma proteomics in patients with varicocele to discuss the challenges in undertaking these studies, as well as the future outlook derived from the growing body of evidence on the seminal proteome.
Collapse
Affiliation(s)
| | | | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, R. Embau, 231, 04039-060; Sao Paulo Hospital, Sao Paulo, Brazil
| |
Collapse
|
8
|
Zhang S, Wang QM, Ding XP, Wang T, Mu XM, Chen ZY. Association of polymorphisms in PATE1 gene with idiopathic asthenozoospermia in Sichuan, China. J Reprod Immunol 2016; 118:54-60. [PMID: 27636828 DOI: 10.1016/j.jri.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/16/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Idiopathic Asthenozoospermia (AZS) is a common symptom of male infertility described as reduced forward motility or absence of sperm motility. The PATE1 is generally expressed in male genital tract and related to sperm development, maturation and fertilization. However, the single nucleotide polymorphisms (SNPs) of the PATE1 gene which contribute to AZS were still unknown. For this reason, the possible association between the single nucleotide polymorphisms of the PATE1 gene and idiopathic asthenozoospermia was investigated in this research. METHODS 108 idiopathic asthenozoospermia were screened by karyotype analysis, detection of Y microdeletions and mutations in 5 other genes from 140 clinical AZS. The sequence analyses of the PATE1 gene were conducted in 108 idiopathic asthenozoospermia and 106 fertile men with normospermic parameters in Sichuan, China. RESULTS In this study, a total 108 patients without chromosomal abnormalities, Y microdeletions and selected genes mutation were confirmed. The 1423G (odds ratio [OR] 1.939, 95% confidence interval [CI] 1.320-2.848, P=0.001) was found to be increased significantly in idiopathic asthenozoospermic patients compared with their fertile counterparts. This mutation substitutes a highly conserved glutamic to arginine at the position of the 47th amino acid which was shown to be located on the flank of the pleated sheet domain in PATE1 protein by the 3D model given by the Protein Model Portal (PMP). Moreover, PolyPhen-2 analysis predicted that this variant was "probably damaging". CONCLUSIONS These results suggested that PATE1 variant (A1423G) was probably one of the high risk genetic factors for idiopathic asthenozoospermia among males in Sichuan, China.
Collapse
Affiliation(s)
- Shun Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, School of Life Science, Institute of Medical Genetics, Sichuan University, Chengdu, China; Bio-resource Research and Utilization, Joint Key Laboratory of Sichuan and Chongqing, Chengdu, China
| | - Qing-Ming Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, School of Life Science, Institute of Medical Genetics, Sichuan University, Chengdu, China; Bio-resource Research and Utilization, Joint Key Laboratory of Sichuan and Chongqing, Chengdu, China
| | - Xian-Ping Ding
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, School of Life Science, Institute of Medical Genetics, Sichuan University, Chengdu, China; Bio-resource Research and Utilization, Joint Key Laboratory of Sichuan and Chongqing, Chengdu, China; Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu 610064, China.
| | - Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, School of Life Science, Institute of Medical Genetics, Sichuan University, Chengdu, China; Bio-resource Research and Utilization, Joint Key Laboratory of Sichuan and Chongqing, Chengdu, China
| | - Xue-Mei Mu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, School of Life Science, Institute of Medical Genetics, Sichuan University, Chengdu, China; Bio-resource Research and Utilization, Joint Key Laboratory of Sichuan and Chongqing, Chengdu, China
| | - Zu-Yi Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, School of Life Science, Institute of Medical Genetics, Sichuan University, Chengdu, China; Bio-resource Research and Utilization, Joint Key Laboratory of Sichuan and Chongqing, Chengdu, China
| |
Collapse
|
9
|
Wang X, Liu F, Gao X, Liu X, Kong X, Wang H, Li J. Comparative proteomic analysis of heat stress proteins associated with rat sperm maturation. Mol Med Rep 2016; 13:3547-52. [PMID: 26936680 DOI: 10.3892/mmr.2016.4958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/13/2016] [Indexed: 11/05/2022] Open
Abstract
Heat stress is demonstrated to have an effect on the function of the male testis, however, limited information has been reported on its effects on sperm maturation. In the present study, a comparative proteomic analysis was performed on the rat caput epididymal fluids responsible for sperm maturation, to identify key heat‑stress‑associated sperm maturation proteins. The results demonstrated 21 proteins corresponding to 29 differential protein spots, including 10 downregulated and 11 upregulated proteins in the heat treatment group. Functional analysis demonstrated that these proteins were primarily involved in enriched reproduction and antioxidant activity. Analysis of western blot and immunohistochemical analysis demonstrated that the expression of antioxidant proteins peroxiredoxin 6 and clusterin were downregulated, and the expression of superoxide dismutase upregulated, in the heat treatment group. Morphological and TUNEL experiments demonstrated that altered nucleus activity occurred in the caput epididymis. The study provided, to the best of our knowledge, novel information for studies on the biological functions of the epididymis and sperm maturation.
Collapse
Affiliation(s)
- Xiaomei Wang
- Central Laboratory, Yantai Yu Huang Ding Hospital, Yantai, Shandong 264000, P.R. China
| | - Fujun Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xin Gao
- College of Life Science, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Xin Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaojun Kong
- Central Laboratory, Yantai Yu Huang Ding Hospital, Yantai, Shandong 264000, P.R. China
| | - Haiyan Wang
- Central Laboratory, Yantai Yu Huang Ding Hospital, Yantai, Shandong 264000, P.R. China
| | - Jianyuan Li
- Central Laboratory, Yantai Yu Huang Ding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
10
|
Liu XX, Zhang H, Shen XF, Liu FJ, Liu J, Wang WJ. Characteristics of testis-specific phosphoglycerate kinase 2 and its association with human sperm quality. Hum Reprod 2015; 31:273-9. [PMID: 26677959 DOI: 10.1093/humrep/dev301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/12/2015] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Is there an association between the expression of phosphoglycerate kinase (PGK) 2 in spermatozoa and sperm quality in both elderly men and young asthenozoospermia patients? SUMMARY ANSWER Spermatozoa from elderly men and young asthenozoospermia patients show decreased expression of PGK2, which has a close positive relationship with sperm quality. WHAT IS KNOWN ALREADY PGK1 and PGK2 are involved in spermatogenesis and thought to be related to sperm motility. However, limited information is known about their temporal-spatial expression in human spermatogenesis and their relationship with sperm quality. STUDY DESIGN, SIZE, DURATION This was a case-control study including 30 healthy young males (aged 28-31 years), 30 elderly men (aged 68-70 years), and 30 asthenozoospermic patients (aged 25-40 years, progressive motility <32%) who donated semen samples. Furthermore, young testes samples were obtained from five fathers (27-33 years old) who had died in car accidents, while aged testes samples were obtained from five elderly fathers (78-82 years old) who were prostate cancer patients. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen samples from young adults, elderly men and asthenozoospermic patients were prepared, and their parameters were assessed by Computer-Aided Sperm Analysis (CASA). Sperm proteins were extracted for western blot analysis. Immunohistochemistry was used to characterize the cellular localization of PGK1 and PGK2 in testes samples. Sperm immunofluorescence quantification experiments identified the differential expression of PGK1 and PGK2 in sperm from young adults, elderly men and asthenozoospermic patients. Antibodies against PGK1 and PGK2 were used to test their influence on sperm motility and penetration into viscous media. A modified Kremer test using methyl cellulose was adopted to assess sperm function via penetration into viscous media. MAIN RESULTS AND THE ROLE OF CHANCE Cellular localization analysis showed that PGK1 was mainly expressed in spermatogonia whereas PGK2 was mainly expressed in round spermatids. Expression levels of both PGKs were significantly decreased in the testis with ageing (P < 0.05). Western blot and immunofluorescence quantification showed markedly lower expression of PGK2 (P < 0.05) in sperm from elderly men or asthenozoospermic patients compared sperm from with healthy young men. Sperm functional analysis validated the close relationship between expression of PGK2 and sperm motility (staining percentage, r = 0.60, P < 0.05; intensity, r = 0.59, P < 0.05). Use of an anti-PGK2 antibody on sperm significantly decreased their ability to penetrate into a cervical mucus substitute (P < 0.05). LIMITATIONS, REASONS FOR CAUTION Before any clinical applications using PGK2 to assess sperm quality can be developed, more cases should be used to evaluate this approach. WIDER IMPLICATIONS OF THE FINDINGS The study provides new insights into the role of PGKs in male reproduction. The results also indicate that PGK2 is a promising molecular candidate for the assessment of sperm quality and the screening of male contraceptive targets. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants from the National Natural Science Foundation of China (no. 81300533, 81370013 and 81000277) and Shandong Provincial Natural Science Foundation, China (ZR2013HQ002). The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Xue-Xia Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Hua Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Xiao-Fang Shen
- Central Laboratory, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Fu-Jun Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Juan Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Wen-Juan Wang
- Reproduction Medical Center, Yantai Yu Huang Ding Hospital/Qingdao University, Yantai 264000, Shandong, P.R. China
| |
Collapse
|
11
|
Camargo M, Intasqui P, Bertolla RP. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele. Asian J Androl 2015. [PMID: 26643563 DOI: 10.4103/1008-682χ.168788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Varicocele, the most important treatable cause of male infertility, is present in 15% of adult males, 35% of men with primary infertility, and 80% of men with secondary infertility. On the other hand, 80% of these men will not present infertility. Therefore, there is a need to differentiate a varicocele that is exerting a deleterious effect that is treatable from a "silent" varicocele. Despite the growing evidence of the cellular effects of varicocele, its underlying molecular mechanisms are still eluding. Proteomics has become a promising area to determine the reproductive biology of semen as well as to improve diagnosis of male infertility. This review aims to discuss the state-of-art in seminal plasma proteomics in patients with varicocele to discuss the challenges in undertaking these studies, as well as the future outlook derived from the growing body of evidence on the seminal proteome.
Collapse
Affiliation(s)
| | | | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, R. Embau, 231, 04039-060; Sao Paulo Hospital, Sao Paulo, Brazil
| |
Collapse
|
12
|
Liu X, Liu F. In‑depth mapping of human testicular and epididymal proteins and their functional association with spermatozoa. Mol Med Rep 2015; 12:173-9. [PMID: 25760095 PMCID: PMC4438928 DOI: 10.3892/mmr.2015.3435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/06/2015] [Indexed: 12/14/2022] Open
Abstract
The mammalian testis and epididymis are responsible for spermatozoa production and maturation, which contributes to male fertility. Predominantly expressed proteins in the testis and epididymis were suggested to be involved in the key functions or pathways in spermatogenesis and sperm maturation. To further investigate these proteins and their associations with sperm, large protein profiles of human testis and epididymis were mapped. Predominantly-expressed testicular (173) and epididymal (244) secreted proteins were further screened and functionally characterized. Differential expression levels of solute carrier family 2 (facilitated glucose transporter), member 3, solute carrier family 25 (carnitine/acylcarnitine translocase), member 20, WAP-type four-disulfide core domain protein 8 and prostate and testis expressed 1 were validated using western blot and immunohistochemical analyses. The results may provide novel insight into the understanding of testicular and epididymal physiology and function, and facilitate sperm maturation research.
Collapse
Affiliation(s)
- Xuexia Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Fujun Liu
- Central Laboratory, Yantai Yu Huang Ding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
13
|
Liu FJ, Liu X, Han JL, Wang YW, Jin SH, Liu XX, Liu J, Wang WT, Wang WJ. Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients. Hum Reprod 2015; 30:861-9. [DOI: 10.1093/humrep/dev003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
14
|
Egea RR, Puchalt NG, Escrivá MM, Varghese AC. OMICS: Current and future perspectives in reproductive medicine and technology. J Hum Reprod Sci 2014; 7:73-92. [PMID: 25191020 PMCID: PMC4150148 DOI: 10.4103/0974-1208.138857] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 02/26/2014] [Indexed: 12/16/2022] Open
Abstract
Many couples present fertility problems at their reproductive age, and although in the last years, the efficiency of assisted reproduction techniques has increased, these are still far from being 100% effective. A key issue in this field is the proper assessment of germ cells, embryos and endometrium quality, in order to determine the actual likelihood to succeed. Currently available analysis is mainly based on morphological features of oocytes, sperm and embryos and although these strategies have improved the results, there is an urgent need of new diagnostic and therapeutic tools. The emergence of the - OMICS technologies (epigenomics, genomics, transcriptomics, proteomics and metabolomics) permitted the improvement on the knowledge in this field, by providing with a huge amount of information regarding the biological processes involved in reproductive success, thereby getting a broader view of complex biological systems with a relatively low cost and effort.
Collapse
Affiliation(s)
- Rocío Rivera Egea
- Andrology Laboratory and Semen Bank, Instituto Universitario, IVI Valencia, Spain
| | | | | | | |
Collapse
|
15
|
Hua XF, Wang XB, Liu FJ. Functional analysis of human cancer-associated genes and their association with the testes and epididymis. Oncol Lett 2013; 6:811-816. [PMID: 24137416 PMCID: PMC3789015 DOI: 10.3892/ol.2013.1450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/20/2013] [Indexed: 12/29/2022] Open
Abstract
Human cancer-associated UniGene sets (NCBI GeneBank) provide a platform for identifying differentially-expressed genes in human cancers. The present study identified and characterized a set of human cancer-associated genes using the Digital Differential Display (DDD) and functional analysis tools. A total of 1,904 genes were differentially expressed in 15 cancer types, including genes that had been previously shown to be specific in certain human cancers. A total of 274 genes were uniquely expressed in certain cancer types, including 37 genes that were highly expressed in the human testes and epididymis. These genes mainly functioned as ribosomal proteins, enzymes, receptors, secretory proteins and cell adhesion molecules. The most common domains that were encoded by the cancer-associated genes were those of cytochrome P450 CYP2D6, serpin and apolipoprotein A-I. A further gene ontology (GO) enrichment analysis revealed seven major functional clusters, which corresponded to the enriched pathways involved in cancer. The present study provides a source of cancer-associated genes and their functions. The results provide new insights into cancer biology and the involvement of highly-expressed epididymal genes in cancer biomarkers.
Collapse
Affiliation(s)
- Xiu-Feng Hua
- Department of Endocrinology, Yu-Huang-Ding Hospital/Qingdao University, Yantai, Shandong 264000, P.R. China
| | | | | |
Collapse
|