1
|
Yeşildağ A, Kızıloğlu HT, Dirican E, Erbaş E, Gelen V, Kara A. Anticarcinogenic Effects of Gold Nanoparticles and Metformin Against MCF-7 and A549 Cells. Biol Trace Elem Res 2024; 202:4494-4507. [PMID: 38358644 PMCID: PMC11339093 DOI: 10.1007/s12011-024-04090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Metformin is commonly prescribed to people with diabetes. Metformin has been shown in previous studies to be able to prevent the growth of cancer cells. This study aims to investigate the effects of metformin and gold nanoparticles in MCF7 breast cancer and A549 lung cell lines. The effects of metformin and gold nanoparticles on MCF7 breast cancer and A549 lung cells were determined on cells grown in 24 h cell culture. MCF-7 and A549 cells were incubated for 24 h with the treatment of escalating molar concentrations of ifosfamide. The MTT assay was used to determine the cytotoxicity of metformin toward MCF7 and A549 cell lines. The expression of Bax, BCL2, PI3K, Akt3, mTOR, Hsp60, Hsp70, and TNF-α was measured by RT-PCR. Metformin and gold nanoparticles inhibited the proliferation of MCF-7 and A549 cells in a dose and time-dependent manner with an IC50 value of 5 µM and 10 µg/mL. RT-PCR assays showed ifosfamide + metformin + gold nanoparticles significantly reduced the expression of BCL2, PI3K, Akt3, mTOR, Hsp60 and Hsp70 and increased the expression of TNF-α and Bax. The findings obtained in this study suggest that further studies should be conducted, and metformin and gold nanoparticles can be used in breast cancer and lung cancer treatments.
Collapse
Affiliation(s)
- Ali Yeşildağ
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey.
| | - Halime Topal Kızıloğlu
- Department of Molecular Biology and Genetic, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ebubekir Dirican
- Department of Medical Biology, Faculty of Medicine, Bilecik Şeyh Edabali University, Bilecik, Turkey
| | - Elif Erbaş
- Department of Histology and Embryology Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Adem Kara
- Department of Molecular Biology and Genetic, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
2
|
Han HJ, Sivaraman A, Kim M, Min KH, Song ME, Choi Y, Choi WJ, Han HK, Han J, Jang JP, Ryoo IJ, Lee K, Soung NK. HIF-1α inhibition by MO-2097, a novel chiral-free benzofuran targeting hnRNPA2B1. J Adv Res 2024; 64:67-81. [PMID: 37977260 PMCID: PMC11464424 DOI: 10.1016/j.jare.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator mediating adaptive responses to hypoxia. It is up-regulated in the tumor microenvironment and recognized as an effective anticancer drug target. Previously, we discovered that the natural compound moracin-O and its synthetic derivative MO-460 inhibited HIF-1α via hnRNPA2B1. OBJECTIVES This study aimed to develop novel HIF-1 inhibitors for cancer chemotherapy by harnessing the potential of the natural products moracins-O and P. METHODS In an ongoing search for novel HIF-1 inhibitors, a series of nature-inspired benzofurans with modifications on the chiral rings of moracins-O and P were synthesized. They showed improved chemical tractability and were evaluated for their inhibitory activity on HIF-1α accumulation under hypoxic conditions in HeLa CCL2 cells. The most potent derivative's chemical-based toxicities, binding affinities, and in vivo anti-tumorigenic effects were evaluated. Further, we examined whether our compound, MO-2097, exhibited anticancer effects in three-dimensional cultured organoids. RESULTS Herein, we identified a novel synthetic chiral-free compound, MO-2097, with reduced structural complexity and increased efficiency. MO-2097 exhibited inhibitory effects on hypoxia-induced HIF-1α accumulation in HeLa CCL2 cells via inhibition of hnRNPA2B1 protein, whose binding affinities were confirmed by isothermal titration calorimetry analysis. In addition, MO-2097 demonstrated in vivo efficacy and biocompatibility in a BALB/c mice xenograft model. The immunohistochemistry staining of MO-2097-treated tissues showed decreased expression of HIF-1α and increased levels of apoptosis marker cleaved caspase 3, confirming in vivo efficacy. Furthermore, we confirmed that MO-2097 works effectively in cancer patient-based organoid models. CONCLUSION MO-2097 represents a promising new generation of chemotherapeutic agents targeting HIF-1α inhibition via hnRNPA2B1, requiring further investigation.
Collapse
Affiliation(s)
- Ho Jin Han
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Aneesh Sivaraman
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyoung Ho Min
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Mo Eun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Jun Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Junyeol Han
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Biomolecular Science, University of Science, and Technology, Daejeon, 34113, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - In-Ja Ryoo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Nak-Kyun Soung
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Biomolecular Science, University of Science, and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Abdelgalil AA, Monir R, Elmetwally M, Ghattas MH, Bazeed FB, Mesbah NM, Abo-Elmatty DM, Mehanna ET. The Relation of VEGFA, VEGFR2, VEGI, and HIF1A Genetic Variants and Their Serum Protein Levels with Breast Cancer in Egyptian Patients. Biochem Genet 2024; 62:547-573. [PMID: 37392242 DOI: 10.1007/s10528-023-10419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Breast cancer is the most common type of cancer in Egyptian females. Polymorphisms in the angiogenesis pathway have been implicated previously in cancer risk and prognosis. The aim of the current study was to determine whether certain polymorphisms in the genes of vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), vascular endothelial growth inhibitor (VEGI), and hypoxia-inducible factor-1α (HIF1A) associated with breast cancer development. The study included 154 breast cancer patients and 132 apparently healthy age-matched females as a control group. VEGFA rs25648 genotyping was performed using (ARMS) PCR technique; while VEGFR2 rs2071559, VEGI rs6478106, and HIF-1α rs11549465 were genotyped by the PCR-RFLP method. Serum levels of VEGF, VEGFR2, VEGI, and HIF1A proteins in breast cancer patients and controls were measured by ELISA. There was a significant association between the VEGFA rs25648 C allele and breast cancer risk (OR 2.5, 95% CI 1.7-3.6, p < 0.001). VEGFA rs25648 C/C genotype was statistically significantly higher in breast cancer patients vs. control (p < 0.001). Participants with the T/T and T/C VEGFR2 rs2071559 genotypes had 5.46 and 5 higher odds, respectively, of having breast cancer than those with the C/C genotype. For the VEGI rs6478106 polymorphism, there was a higher proportion of C allele in breast cancer patients vs. control (p = 0.003). Moreover, the C/C genotype of VEGI rs6478106 was statistically significantly higher in breast cancer patients vs. control (p = 0.001). There was no significant difference in genotypes and allele frequencies of HIF1A rs11549465 polymorphism between breast cancer cases and control individuals (p > 0.05). Serum levels of VEGFA, VEGI, and HIF1A were considerably greater in women with breast cancer than in the control (p < 0.001). In conclusion, the genetic variants VEGFA rs25648, VEGFR2 rs2071559, and VEGI rs6478106 revealed a significant association with increased breast cancer risk in Egyptian patients.
Collapse
Affiliation(s)
- Amani A Abdelgalil
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| | - Rehan Monir
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Elmetwally
- Department of Surgical Oncology, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Maivel H Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Fagr B Bazeed
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
4
|
Pandey AK, Trivedi V. Hemin competitively inhibits HSPA8 ATPase activity mitigating its foldase function. Arch Biochem Biophys 2024; 752:109889. [PMID: 38215959 DOI: 10.1016/j.abb.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Hemolysis in red blood cells followed by hemoglobin degradation results in high hemin levels in the systemic circulation. Such a level of hemin is disastrous for cells and tissues and is considerably responsible for the pathologies of diseases like severe malaria. Hemin's hydrophobic chemical nature and structure allow it to bind several proteins leading to their functional modification. Such modifications in physiologically relevant proteins can have a high impact on various cellular processes. HSPA8 is a chaperone that has a protective role in oxidative stress by aiding protein refolding. Through ATPase activity assays we found that hemin can competitively inhibit ATP hydrolysis by the chaperone HSPA8. Hemin as such does not affect the structural integrity of the protein which is inferred from CD spectroscopy and Gel filtration but it hinders the ATP-dependent foldase function of the chaperone. HSPA8 was not able to cause the refolding of the model protein lysozyme in the presence of hemin. The loss in HSPA8 function was due to competition between hemin and ATP as the chaperone was able to regain the foldase function when the concentration of ATP was gradually increased with hemin present at the inhibitory concentration. In-silico studies to establish the competition for the specific binding site revealed that ATP was unable to replace hemin from the ATP binding pocket of HSPA8 and was forced to form a non-specific and unstable complex. In-vitro isothermal calorimetry revealed that the affinity of ATP for binding to HSPA8 was reduced 22 folds in the presence of hemin. The prevention of HSPA8's cytoprotective function by hemin can be a major factor contributing to the overall cellular damage during hemin accumulation in the case of severe malaria and other hemolytic diseases.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, 781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Wang Y, Sun X, Han Y, Wang K, Cheng L, Sun Y, Besenbacher F, Yu M. Au@MnSe 2 Core-Shell Nanoagent Enabling Immediate Generation of Hydroxyl Radicals and Simultaneous Glutathione Deletion Free of Pre-Reaction for Chemodynamic-Photothermo-Photocatalytic Therapy with Significant Immune Response. Adv Healthc Mater 2022; 11:e2200041. [PMID: 35481899 DOI: 10.1002/adhm.202200041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Indexed: 11/08/2022]
Abstract
As a typical tumor microenvironment-responsive therapy, chemodynamic therapy (CDT), producing hydroxyl radicals (• OH) to eliminate tumor cells, has demonstrated great promise. Nevertheless, there are still major challenges: • OH generated from endogenous H2 O2 is usually insufficient; the CDT effect is strongly dependent on the pre-reaction with glutathione. Addressing the challenges, Au@MnSe2 core-shell nanoagent for synergetic chemodynamic-photothermo-photocatalytic therapy combined with tetramodal imaging, including magnetic resonance imaging, computed tomography, photoacoustic, and infrared thermal imaging is reported. Distinct from the reported glutathione-depleting agents, Mn2+ in MnSe2 allows immediate generation of • OH, independent of pre-reaction. Meanwhile, Mn3+ consumes glutathione by its conversion to Mn2+ . The Au-MnSe2 combination promotes photothermal conversion and photocatalytic reaction, resulting in largely enhanced • OH generation from endogenous H2 O2 and significant hyperthermia. Meanwhile, immune response is effectively activated: the intratumoral expression of programmed cell death-1 and proinflammatory cytokines increase to 4-7 folds; the cytotoxic and helper T lymphocytes cells in the tumor area increase to more than 2.5-folds; an evident, temporary systemic immunostimulatory effect is demonstrated. High tumor inhibition rate (≈97.3%) and greatly prolonged survival are obtained. This highly-integrated design coordinating three different therapies with four different imaging modals provide new possibilities for high-performance theranostic nanoagents.
Collapse
Affiliation(s)
- Yuanlin Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
- iNANO and Department of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Xiang Sun
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yaqian Han
- Condensed Matter Science and Technology Institute School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Kai Wang
- Department of Medical Imaging The Fourth Affiliated Hospital of the Harbin Medical University Harbin 150001 P. R. China
| | - Lixin Cheng
- Department of Medical Imaging The Fourth Affiliated Hospital of the Harbin Medical University Harbin 150001 P. R. China
| | - Ye Sun
- Condensed Matter Science and Technology Institute School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Flemming Besenbacher
- iNANO and Department of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
6
|
Alterations of the 70 kDa heat shock protein (HSP70) and sequestosome-1 (p62) in women with breast cancer. Sci Rep 2021; 11:22220. [PMID: 34782665 PMCID: PMC8593156 DOI: 10.1038/s41598-021-01683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) respond to altered physiological conditions to alleviate the threat. Production of the 70 kDa heat shock protein (HSP70) is up-regulated to protect proteins from degradation. Sequestosome-1 (p62) binds to altered proteins and the p62-protein complex is degraded by autophagy. P62 is also a regulator of intracellular kinase activity and cell differentiation. We hypothesized that the PBMC response to a malignant breast mass involves elevated production of HSP70 and a decrease in intracellular p62. In this study 46 women had their breast mass excised. PBMCs were isolated and intracellular levels of HSP70 and p62 were quantitated by ELISA. Differences between women with a benign or malignant breast mass were determined. A breast malignancy was diagnosed in 38 women (82.6%) while 8 had a benign lesion. Mean intracellular HSP70 levels were 79.3 ng/ml in PBMCs from women with a malignant lesion as opposed to 44.2 ng/ml in controls (p = 0.04). The mean PBMC p62 level was 2.3 ng/ml in women with a benign breast lesion as opposed to 0.6 ng/ml in those with breast cancer (p < 0.001). Mean p62 levels were lowest in women with invasive carcinoma and a positive lymph node biopsy when compared to those with in-situ carcinoma or absence of lymphadenopathy, respectively. Intracellular HSP70 and p62 levels in PBMCs differ between women with a malignant or benign breast lesion. These measurements may be of value in the preoperative triage of women with a breast mass.
Collapse
|
7
|
Cava C, Sabetian S, Castiglioni I. Patient-Specific Network for Personalized Breast Cancer Therapy with Multi-Omics Data. ENTROPY 2021; 23:e23020225. [PMID: 33670375 PMCID: PMC7918754 DOI: 10.3390/e23020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/06/2023]
Abstract
The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein–protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug–protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy
- Correspondence:
| | - Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Isabella Castiglioni
- Department of Physics “Giuseppe Occhialini”, University of Milan-Bicocca Piazza dell’Ateneo Nuovo, 20126 Milan, Italy;
| |
Collapse
|
8
|
Zhang T, Wu B, Akakuru OU, Yao C, Sun S, Chen L, Ren W, Wu A, Huang P. Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer. Cancer Lett 2020; 500:41-50. [PMID: 33359275 DOI: 10.1016/j.canlet.2020.12.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria-targeted mild-temperature photothermal therapy (MT-PTT) is a promising strategy that can maximize anticancer effects and reduce adverse reactions. Here, a novel photosensitizer with mitochondrial targeting based on IR780 iodide and heat shock protein 90 inhibitor (BIIB021), which can passively accumulate in MCF-7 cells and achieve effective MT-PTT effect is synthesized. The prepared PEG-IR780-BIIB021 nano-micelles possess considerable biocompatibility and biological stability, with an encapsulation efficiency of about 84% for BIIB021. They can selectively enrich in mitochondria, and release BIIB021 after NIR irradiation to reduce cell tolerance to heat, thereby reducing the mitochondrial membrane potential and rapidly affecting key intrinsic apoptotic factors (Cyt-C, Caspase-9, Bcl-2 and Bax) to achieve the effect of MT-PTT. It is believed that mitochondria-targeted MT-PTT generated by the PEG-IR780-BIIB021 nano-micelles is a promising therapeutic strategy in clinical practice.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Bihan Wu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Shan Sun
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Libin Chen
- Department of Ultrasound in Medicine, Ningbo First Hospital, Ningbo, 315010, PR China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China.
| |
Collapse
|
9
|
Mir R, Abu-Duhier FM, Albalawi IA. Molecular Evaluation of HIF-1α Gene Variation and Determination of Its Frequency and Association with Breast Cancer Susceptibility in Saudi Arabia. Endocr Metab Immune Disord Drug Targets 2020; 21:544-553. [PMID: 32914726 DOI: 10.2174/1871530320666200910105214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
AIM Hypoxia-inducible factor 1 (HIF-1α) is responsible in regulating oxygen homeostasis in tissues and is a central effector of the hypoxic response besides its protein overexpression has been shown to have prognostic relevance in several cancers including breast cancer. Several reports indicated that HIF-1α gene variation C1772T (Pro582Ser) is associated with increased breast susceptibility but results remained controversial. Therefore, we performed the molecular evaluation of HIF-1α gene variation and determined its frequency and association with Breast Cancer susceptibility in Saudi Arabia. METHODS This study was conducted on histologically confirmed Breast cancer patients and gender matched healthy women. HIF-1α C1772T (Pro582Ser) genotyping was done by Amplification refractory mutation system PCR method. The HIF-1α gene genotypes were correlated with different clinicopathological characteristics of breast cancer patients. RESULTS A significant difference was observed in genotype distribution of HIF-1α gene variation C1772T (Pro582Ser) between breast cancer cases and gender matched healthy controls (P=0.010). Our findings showed that the HIF- 1α variant was associated with an increased risk of Breast cancer for HIF-1α CC vs CT genotype OR = 2.20, 95% CI = (1.28 -3.77), P = 0.004) in codominant inheritance model. The significant association was reported for HIF1A for genotypes CC vs (CT+ TT) OR = 1.98, 95% CI = (1.17-3.34), P = 0.010) in dominant inheritance model tested. In case of recessive inheritance model, a non-significant association of HIF-1 alpha gene variants was reported for (CC+ CT) vs TT) OR = 1.03, 95% CI = (0. 064-16.79), P = 0.97). During the allelic comparison, a non-significant association was reported between A vs C allele among Breast cancer patients. A significant association of HIF- 1α polymorphism was reported with stage as well as distant metastasis of the disease. CONCLUSION A significant difference was observed in genotype distribution of HIF-1α gene variation C1772T (Pro>Ser) between breast cancer cases and gene matched healthy controls (P=0.010). HIF-1α- CT heterozygosity and CC genotype increased the susceptibility .The HIF-1α polymorphism was reported to be significantly associated with the distant metastasis of Breast cancer. Further studies with larger data set and well-designed models are required to validate our findings.
Collapse
Affiliation(s)
- Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisel M Abu-Duhier
- Prince Fahd Bin Sultan Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ibrahim A Albalawi
- Prince Fahd Bin Sultan Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
10
|
HIF1A C1772T genetic variation is associated with the elevated risk of breast cancer among Asians: An updated meta-analysis. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Screening and identification of potential prognostic biomarkers in bladder urothelial carcinoma: Evidence from bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Prognostic Potential of Alternative Splicing Markers in Endometrial Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:1039-1048. [PMID: 31785579 PMCID: PMC6889075 DOI: 10.1016/j.omtn.2019.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Alternative splicing (AS), an important post-transcriptional regulatory mechanism that regulates the translation of mRNA isoforms and generates protein diversity, has been widely demonstrated to be associated with oncogenic processes. In this study, we systematically analyzed genome-wide AS patterns to explore the prognostic implications of AS in endometrial cancer (EC). A total of 2,324 AS events were identified as being associated with the overall survival of EC patients, and eleven of these events were further selected using a random forest algorithm. With the implementation of a generalized, boosted regression model, a prognostic AS model that aggregated these eleven markers was ultimately established with high performance for risk stratification in EC patients. Functional analysis of these eleven AS markers revealed various potential signaling pathways implicated in the progression of EC. Splicing network analysis demonstrated the notable correlation between the expression of splicing factors and AS markers in EC and further determined eight candidate splicing factors that could be therapeutic targets for EC. Taken together, the results of this study present the utility of AS profiling in identifying biomarkers for the prognosis of EC and provide comprehensive insight into the molecular mechanisms involved in EC processes.
Collapse
|
13
|
Li HN, He T, Zha YJ, Du F, Liu J, Lin HR, Yang WZ. HIF-1α rs11549465 C>T polymorphism contributes to increased cancer susceptibility: Evidence from 49 studies. J Cancer 2019; 10:5955-5963. [PMID: 31762805 PMCID: PMC6856573 DOI: 10.7150/jca.35716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
HIF-1α (hypoxia-inducible factor-1α) is a transcriptional factor that participates in the regulation of oxygen homeostasis. Despites numbers of case-control studies working on this area, the actual relationship of HIF-1α gene generic variant rs11549465 C>T imposing on cancer susceptibility remains unveiled. To get a better understanding of such relationship, this meta-analysis was carried out by incorporating all eligible case-control studies. Qualified articles were acquired from PubMed, CNKI, EMBASE, PMC, and Wanfang database update to April 2019. Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were employed to estimate the relationship of interest. Heterogeneity tests, sensitivity analyses and publication bias assessments were also carried out to ensure the strength of our conclusion. A total of 46 articles with 49 studies including 12920 cases and 13363 controls were included. The results indicated that HIF-1α rs11549465 C>T was significantly related to the increased risk of overall cancer under four genetic models (TT vs. CC: OR=2.06, 95% CI=1.34-3.16; TT vs. CC/CT: OR=2.42, 95% CI=1.60-3.65; CT/TT vs. CC: OR=1.21, 95% CI=1.04-1.40; T vs. C: OR=1.29, 95% CI=1.12-1.48). Furthermore, enhanced cancer risk was detected after stratification by cancer type, ethnicity, the source of controls and HWE. These results suggest that HIF-1α rs11549465 C>T polymorphism may predispose to cancer susceptibility.
Collapse
Affiliation(s)
- Hu-Nian Li
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ting He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong-Jiu Zha
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Fang Du
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jie Liu
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Hui-Ran Lin
- Animal Experimental Management Center, Public Technology Service Platform, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wen-Zi Yang
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| |
Collapse
|
14
|
Ali A, Qureshi SF, Venkateshwari A, Calambur N, Rao H, Jayakrishnan MP, Shenthar J, Thangaraj K, Nallari P. Implications of HSP 90 Q488H Polymorphism in Long QT Syndrome—A South Indian Study. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2018; 3:21-27. [DOI: 10.14218/erhm.2017.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Sun H, Cai X, Zhou H, Li X, Du Z, Zou H, Wu J, Xie L, Cheng Y, Xie W, Lu X, Xu L, Chen L, Li E, Wu B. The protein-protein interaction network and clinical significance of heat-shock proteins in esophageal squamous cell carcinoma. Amino Acids 2018; 50:685-697. [PMID: 29700654 DOI: 10.1007/s00726-018-2569-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
Heat-shock proteins (HSPs), one of the evolutionarily conserved protein families, are widely found in various organisms, and play important physiological functions. Nevertheless, HSPs have not been systematically analyzed in esophageal squamous cell carcinoma (ESCC). In this study, we applied the protein-protein interaction (PPI) network methodology to explore the characteristics of HSPs, and integrate their expression in ESCC. First, differentially expressed HSPs in ESCC were identified from our previous RNA-seq data. By constructing a specific PPI network, we found differentially expressed HSPs interacted with hundreds of neighboring proteins. Subcellular localization analyses demonstrated that HSPs and their interacting proteins distributed in multiple layers, from membrane to nucleus. Functional enrichment annotation analyses revealed known and potential functions for HSPs. KEGG pathway analyses identified four significant enrichment pathways. Moreover, three HSPs (DNAJC5B, HSPA1B, and HSPH1) could serve as promising targets for prognostic prediction in ESCC, suggesting these HSPs might play a significant role in the development of ESCC. These multiple bioinformatics analyses have provided a comprehensive view of the roles of heat-shock proteins in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Hong Sun
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Xinyi Cai
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Haofeng Zhou
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Xiaoqi Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, China
| | - Haiying Zou
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Jianyi Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Lei Xie
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
| | - Yinwei Cheng
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China
| | - Wenming Xie
- Network and Information Center, Shantou University Medical College, Shantou, 515041, China
| | - Xiaomei Lu
- Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, 830054, Xinjiang Uygur Autonomous Region, China
| | - Liyan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Sichuan, 610041, China
| | - Enmin Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
| | - Bingli Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
16
|
Gladek I, Ferdin J, Horvat S, Calin GA, Kunej T. HIF1A gene polymorphisms and human diseases: Graphical review of 97 association studies. Genes Chromosomes Cancer 2017; 56:439-452. [PMID: 28165644 PMCID: PMC5395341 DOI: 10.1002/gcc.22449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) belong to a family of transcription factors (TF) responsive to a low O2 availability, which is often a characteristic feature of solid tumors. The alpha subunit of the HIF heterodimer is O2 -sensitive, and once stabilized in hypoxia, it functions as a master regulator of various genes involved in hypoxia pathway. Changes in the HIF1A (hypoxia inducible factor 1, alpha subunit) nucleotide sequence or expression has been shown to be associated with the development of several diseases. Because of increasing research interest in HIF1A gene a review of association studies was needed. We here reviewed published data on single nucleotide polymorphisms (SNPs) in HIF1A in various diseases; in total, 34 SNPs were tested for an association with 49 phenotypes, and the results were visualized using the Cytoscape software. Among all collected polymorphisms 16 SNPs showed significant associations with 40 different phenotypes, including six SNPs associated with 14 cancer types. Missense SNPs (rs11549465 and rs11549467) within the oxygen-dependent degradation domain were most frequently studied. The study provides a comprehensive tool for researchers working in this area and may contribute to more accurate disease diagnosis and identification of therapeutic targets.
Collapse
Affiliation(s)
- I Gladek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domzale, Slovenia
| | - J Ferdin
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - S Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domzale, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - GA Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas, M.D. Anderson Cancer Center, So Campus Research Bldg 3, 1881 East Road, Houston, Texas, 77030, USA
| | - T Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domzale, Slovenia
| |
Collapse
|
17
|
Hou L, Chen M, Wang M, Cui X, Gao Y, Xing T, Li J, Deng S, Hu J, Yang H, Jiang J. Systematic analyses of key genes and pathways in the development of invasive breast cancer. Gene 2016; 593:1-12. [PMID: 27506314 DOI: 10.1016/j.gene.2016.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/15/2016] [Accepted: 08/04/2016] [Indexed: 11/29/2022]
|
18
|
Wang X, Liu H, Zhao C, Li W, Xu H, Chen Y. The DEAD-box RNA helicase 51 controls non-small cell lung cancer proliferation by regulating cell cycle progression via multiple pathways. Sci Rep 2016; 6:26108. [PMID: 27198888 PMCID: PMC4873746 DOI: 10.1038/srep26108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
The genetic regulation of cell cycle progression and cell proliferation plays a role in the growth of non-small cell lung cancer (NSCLC), one of the most common causes of cancer-related mortality. Although DEAD-box RNA helicases are known to play a role in cancer development, including lung cancer, the potential involvement of the novel family member DDX51 has not yet been investigated. In the current study we assessed the role of DDX51 in NSCLC using a siRNA-based approach. DDX51 siRNA-expressing cells exhibited a slower cell proliferation rate and underwent arrest in S-phase of the cell cycle compared with control cells. Microarray analyses revealed that DDX51siRNA expression resulted in the dysregulation of a number of cell signalling pathways. Moreover, injection of DDX51 siRNA into an animal model resulted in the formation of smaller tumours compared with the control group. We also assessed the expression of DDX51 in patients with NSCLC, and the data revealed that the expression was correlated with patient age but no other risk factors. Overall, our data suggest for the first time that DDX51 aids cell cancer proliferation by regulating multiple signalling pathways, and that this protein might be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Respiration; Anhui Clinical and Preclinical Key Laboratory of Respiratory Diseases; First Affiliated Hospital; Bengbu Medical College; Bengbu 233000, Anhui China
| | - Hongli Liu
- Department of Gynecological Oncology, First Affiliated Hospital; Bengbu Medical College; Bengbu 233000, Anhui China
| | - Chengling Zhao
- Department of Respiration; Anhui Clinical and Preclinical Key Laboratory of Respiratory Diseases; First Affiliated Hospital; Bengbu Medical College; Bengbu 233000, Anhui China
| | - Wei Li
- Department of Respiration; Anhui Clinical and Preclinical Key Laboratory of Respiratory Diseases; First Affiliated Hospital; Bengbu Medical College; Bengbu 233000, Anhui China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200080, China
| | - Yuqing Chen
- Department of Respiration; Anhui Clinical and Preclinical Key Laboratory of Respiratory Diseases; First Affiliated Hospital; Bengbu Medical College; Bengbu 233000, Anhui China
| |
Collapse
|
19
|
Petters E, Sokolowska-Wedzina A, Otlewski J. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule. Int J Mol Sci 2015; 16:19920-35. [PMID: 26307975 PMCID: PMC4581332 DOI: 10.3390/ijms160819920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/02/2015] [Accepted: 07/15/2015] [Indexed: 11/23/2022] Open
Abstract
Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.
Collapse
Affiliation(s)
- Edyta Petters
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Aleksandra Sokolowska-Wedzina
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
- Wroclaw Research Centre EIT+, Stablowicka 147, 54-066 Wroclaw, Poland.
| |
Collapse
|
20
|
Sharma S, Kapahi R, Sambyal V, Guleria K, Manjari M, Sudan M, Uppal MS, Singh NR. No association of hypoxia inducible factor-1α gene polymorphisms with breast cancer in North-West Indians. Asian Pac J Cancer Prev 2015; 15:9973-8. [PMID: 25520138 DOI: 10.7314/apjcp.2014.15.22.9973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxia inducible factor-1 alpha (HIF-1α) is the key regulator of cellular responses to hypoxia and plays a central role in tumour growth. Presence of Single nucleotide polymorphisms (SNPs) in the critical regulatory domains of HIF-1α may result in the overexpression of the protein and subsequent changes in the expression of the downstream target genes. The aim of study was to investigate the association of three SNPs (g.C111A, g.C1772T and g.G1790A) of HIF-1α with the risk of breast cancer in North Indian sporadic breast cancer patients. MATERIALS AND METHODS A total of 400 subjects, including 200 healthy controls and 200 patients with breast cancer were recruited in this study. Genotypes were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS The CC and CA genotype frequency of HIF-1α g.C111A polymorphism was 100 vs 99% and 0 vs 1% in breast cancer patients and healthy controls respectively. The frequencies of CC, CT and TT genotype of g.C1772T polymorphism were 76 vs 74.5%, 19 vs 21% and 5 vs 4.5% in breast cancer patients and control individuals respectively. There was no significant difference in genotype and allele frequencies of HIF-1α g.C1772T polymorphism between cases and control individuals (p>0.05). For g.G1790A genotypes, all patients and controls had only GG genotype. CONCLUSIONS The three HIF-1α polymorphisms (g.C111A, g.C1772T and g.G1790A) are not associated with breast cancer risk in North-West Indian patients.
Collapse
Affiliation(s)
- Sarika Sharma
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kuang D, Chen W, Song YZ, Yu YY, Zhang DY, Wu L, Tang J. Association between the HSPA1B ±1267A/G polymorphism and cancer risk: a meta-analysis of 14 case-control studies. Asian Pac J Cancer Prev 2015; 15:6855-61. [PMID: 25169537 DOI: 10.7314/apjcp.2014.15.16.6855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous epidemiological studies have suggested a potential role of the HSPA1B±1267A/G polymorphism in risk of developing cancer. However, the results were inconsistent. Therefore, we performed this meta-analysis to summarize the possible association with cancer risk. MATERIALS AND METHODS We retrieved relevant articles from PubMed, EMBASE, ISI Web of Science, Chinese Biomedical Literature and Chinese National Knowledge Infrastructure. Studies were selected using specific criteria. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess those associations. All analyses were performed using STATA software. RESULTS Fourteen case-control studies, including 1, 834 cancer cases and 2, 028 controls were included in this meta-analysis. Overall, the results indicated that the G allele of HSPA1B gene ±1267A/G was significantly associated with an increased cancer risk in all genetic models (G vs A: OR=1.51, 95%CI 1.17-1.95, p=0.001; GG vs AA: OR=2.93, 95%CI 1.50-5.74, p=0.002; AG vs AA: OR=1.48, 95%CI 1.10-1.98, p=0.009; GG/AG vs AA: OR=1.69, 95%CI 1.22-2.33, p=0.001; GG vs AG/AA OR=2.31, 95%CI 1.24-4.32, p=0.009). In the subgroup analysis stratified by ethnicity, a significant association was identified in Caucasians (G vs A: OR=1.35, 95%CI 1.08-1.69, p=0.008; GG/AG vs AA: OR=1.36, 95%CI 1.09-1.70, p=0.007), but not in Asians. In the stratified analysis by cancer types, individuals with the G allele showed an increased risk of hepatocellular carcinoma compared with carriers of the A allele (OR=2.40, 95%CI 1.47-3.91, p< 0.001). Inversely, individuals with the GG genotype showed a decreased risk of gastric cancer compared with carriers of the AG/GG genotypes (GG vs AG/AA OR=0.39, 95%CI 0.20-0.70, p=0.007). CONCLUSIONS This meta-analysis suggests associations between the HSPA1B ±1267A/G polymorphism and risk of cancer. However, this association might be Caucasian-specific and the G allele of this polymorphism probably increases risk of hepatocellular carcinoma while decreasing risk of gastric cancer. Further well-designed studies based on larger sample sizes are needed to validate these findings.
Collapse
Affiliation(s)
- Dan Kuang
- Chengdu Municipal Center for Disease Control and Prevention, Chengdu, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
22
|
Yan Q, Chen P, Wang S, Liu N, Zhao P, Gu A. Association between HIF-1α C1772T/G1790A polymorphisms and cancer susceptibility: an updated systematic review and meta-analysis based on 40 case-control studies. BMC Cancer 2014; 14:950. [PMID: 25496056 PMCID: PMC4301938 DOI: 10.1186/1471-2407-14-950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 11/20/2014] [Indexed: 12/12/2022] Open
Abstract
Background HIF-1 (hypoxia-inducible factor 1) is a transcriptional activator that functions as a critical regulator of oxygen homeostasis. Recently, a large number of epidemiological studies have investigated the relationship between HIF-1α C1772T/G1790A polymorphisms and cancer susceptibility. However, the results remain inconclusive. Therefore, we performed a meta-analysis on all of the available case-control studies to systematically summarize the possible association. Methods A literature search was performed using PubMed and the Web of Science database to obtain relevant published studies. Pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for the relationship between HIF-1α C1772T/G1790A polymorphisms and cancer susceptibility were calculated using fixed- and random-effects models when appropriate. Heterogeneity tests, sensitivity analyses and publication bias assessments were also performed in our meta-analysis. Results A total of 40 studies met the inclusion criteria were included in the meta-analysis: 40 studies comprised of 10869 cases and 14289 controls for the HIF-1α C1772T polymorphism and 30 studies comprised of 7117 cases and 10442 controls for the HIF-1α G1790A polymorphism. The results demonstrated that there were significant association between the HIF-1α C1772T polymorphism and cancer susceptibility under four genetic models (TT vs. CC: OR = 1.63, 95% CI = 1.02-2.60; CT + TT vs. CC: OR = 1.15, 95% CI = 1.01-1.34; TT vs. CT + CC: OR = 2.11, 95% CI = 1.32-3.77; T vs. C: OR = 1.21, 95% CI = 1.04-1.41). Similarly, the statistically significant association between the HIF-1α G1790A polymorphism and cancer susceptibility was found to be consistently strong in all of the genetic models. Moreover, increased cancer risk was observed when the data were stratified by cancer type, ethnicity and the source of controls. Conclusions This meta-analysis demonstrates that both the C1772T and G1790A polymorphisms in the HIF-1α gene likely contribute to increased cancer susceptibility, especially in the Asian population and in breast cancer, lung cancer, pancreatic cancer and oral cancer. However, further research is necessary to evaluate the relationship between these polymorphisms and cancer risk. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-950) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.
| | | |
Collapse
|
23
|
Ren HT, Wang XJ, Kang HF, Lin S, Wang M, Dai ZJ. Associations between C1772T polymorphism in hypoxia-inducible factor-1α gene and breast cancer: a meta-analysis. Med Sci Monit 2014; 20:2578-83. [PMID: 25484025 PMCID: PMC4266368 DOI: 10.12659/msm.892374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background A meta-analysis was performed to estimate the association between HIF-1α polymorphism (C1772T) and breast cancer risk. Material/Methods The relevant published literature was retrieved from PubMed, Web of Knowledge, and Embase. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the strength of the associations. Results Six case-control studies, including 2043 cases and 2146 controls were identified. Meta-analysis showed that there was no marked association between C1772T polymorphism and breast cancer risk in the overall population in the dominant model. The subgroup analysis showed an increased breast cancer risk in Asians based on homozygote comparison and the recessive model. There were no associations between C1772T polymorphism with clinicopathological parameters and habits. Conclusions The present meta-analysis suggests that HIF-1α C1772T polymorphism is a risk factor for susceptibility to breast cancer in Asians.
Collapse
Affiliation(s)
- Hong-Tao Ren
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Xi-Jing Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Hua-Feng Kang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Shuai Lin
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Meng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Zhi-Jun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
24
|
Heat shock protein 70 gene polymorphisms and cancer risk: a meta-analysis. ScientificWorldJournal 2014; 2014:540309. [PMID: 25143984 PMCID: PMC4131069 DOI: 10.1155/2014/540309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/29/2014] [Indexed: 12/23/2022] Open
Abstract
The polymorphisms in the three main heat shock protein 70 (HSP70-1, HSP70-2, and HSP70-hom) genes were identified to be associated with cancer risk. However, the results are inconsistent. We perform a meta-analysis to evaluate the association between the three HSP70 polymorphisms and cancer risk. Relevant studies were identified using PubMed, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wanfang databases up to March 29, 2014. The cancer risk associated with the HSP70 polymorphisms was estimated for each study by odds ratios (OR) together with its 95% confidence interval (CI), respectively. Twenty case-control studies from eighteen publications were included; a significant association was observed for HSP70-2 polymorphism (dominant model: OR = 1.53, 95% CI: 1.11–2.09; recessive model: OR = 1.91, 95% CI: 1.06–3.45; AG versus AA: OR = 1.38, 95% CI: 1.03–1.84; GG versus AA: OR = 2.34, 95% CI: 1.21–4.54), while there was no significant association for HSP70-1 and HSP70-hom polymorphisms. Besides, in stratification analyses by ethnicity, cancer type, and source of control, significant association was detected for HSP70-2 polymorphism, while for HSP70-hom polymorphism, we found a significant association in hospital-based population under homozygote comparison model. This meta-analysis suggests that the HSP70-2 polymorphism rather than HSP70-hom and HSP70-1 polymorphisms was associated with the risk of cancer.
Collapse
|
25
|
Wu G, Yan WF, Zhu YZ, Sun PC. Hypoxia-inducible factor-1α (HIF-1α) C1772T polymorphism significantly contributes to the risk of malignancy from a meta-analysis. Tumour Biol 2014; 35:4113-22. [PMID: 24425105 DOI: 10.1007/s13277-013-1538-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022] Open
Abstract
Although the association between hypoxia-inducible factor-1α (HIF-1α) C1772T polymorphism and risk of malignancy has been widely studied, results from published studies remained controversial. Therefore, the relationship between them was further assessed in this meta-analysis. The databases of PubMed, Embase, and Wanfang were searched, and odds ratio with 95% confidence interval (OR and 95% CI) were used to assess the strength of the association. A total of 38 case-control studies with 23,876 participants were included. Overall, the T allele of HIF-1α C1772T was significantly associated with increased risk of malignancy development (OR and 95% CI 1.18 (1.00-1.38), P = 0.048 for T carriers vs. CC; 1.22 (1.05-1.41), P = 0.010 for T carriers vs. C carriers). When subgroup analyses were conducted, T allele was further found to be associated with increased risk of malignancy development for Asians rather than Caucasians (OR and 95% CI 1.36 (1.10-1.67), P = 0.004 for Asians) and for population-based studies (OR and 95% CI 1.19 (1.01-1.41), P = 0.040). Between-study heterogeneity existed in genetic comparison models, and meta-regression indicated that the participants' ethnicities and types of malignancy might be the sources of heterogeneity. No publication bias was found. In conclusion, this study indicated that HIF-1α C1772T polymorphism was significantly associated with increased risk of malignancy development for Asians. More studies were further required to focus on the relationship between HIF-1α C1772T polymorphism and risk of a specific type of tumor.
Collapse
Affiliation(s)
- Gang Wu
- Department of General Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, China
| | | | | | | |
Collapse
|
26
|
The association between hypoxia-inducible factor-1 α gene C1772T polymorphism and cancer risk: a meta-analysis of 37 case-control studies. PLoS One 2013; 8:e83441. [PMID: 24367595 PMCID: PMC3867430 DOI: 10.1371/journal.pone.0083441] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/12/2013] [Indexed: 02/05/2023] Open
Abstract
Background The possible association between HIF-1α C1772T polymorphism and cancer risk has been studied extensively. However, the results were controversial. In order to get a more precise conclusion of this association, a meta-analysis was performed. Methods A total of 10186 cases and 10926 controls in 37 case-control studies were included in this meta-analysis. Allele and genotypic differences between cases and controls were evaluated. Subgroup analysis by cancer site, ethnicity, source of controls and gender was performed. Results The T allele of HIF-1α gene C1772T was significantly associated with increased cancer risk in three genetic models: TT+CT vs.CC (dominant model OR=1.23, 95%CI=1.03-1.47), TT vs. CT+CC (recessive model OR=2.51, 95%CI=1.54-4.09), TT vs. CC (homozygote comparison OR=2.02, 95%CI=1.21-3.39).In subgroup analysis, the frequency of the T variant was found to be significantly increased in cervical cancer, pancreatic cancer, head and neck cancer, renal cell carcinoma, Asian and female subgroups. Conclusions Our meta-analysis suggests that the substitution of C allele with T at HIF-1α gene C1772T polymorphism is a risk factor of cancer, especially for cervical, head and neck cancer, pancreatic cancer and renal cell carcinoma. It is also a risk factor of cancer in Asian group as well as in female group.
Collapse
|
27
|
Yang X, Zhu HC, Zhang C, Qin Q, Liu J, Xu LP, Zhao LJ, Zhang Q, Cai J, Ma JX, Cheng HY, Sun XC. HIF-1α 1772 C/T and 1790 G/A polymorphisms are significantly associated with higher cancer risk: an updated meta-analysis from 34 case-control studies. PLoS One 2013; 8:e80396. [PMID: 24260383 PMCID: PMC3832403 DOI: 10.1371/journal.pone.0080396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/02/2013] [Indexed: 01/02/2023] Open
Abstract
Background HIF-1 activates various genes in cancer progression and metastasis. HIF-1α 1772 C/T and 1790 G/A polymorphisms are reportedly associated with cancer risk; however, the results are inconclusive. Methodology/Principal Findings A meta-analysis of 34 studies that involved 7522 cases and 9847 controls for 1772 C/T and 24 studies that involved 4884 cases and 8154 controls for 1790 G/A was conducted to identify the association of C/T and G/A polymorphisms with cancer risk. Odds ratio (OR) and 95% confidence intervals (95% CI) were used to assess the strength of association. HIF-1α 1772 C/T and 1790 G/A polymorphisms were associated with higher cancer risk in homozygote comparison (1772C/T: TT vs. CC: OR = 2.45, 95% CI: 1.52, 3.96; Pheterogeneity = 0.028; 1790G/A: AA vs. GG: OR=4.74, 95% CI: 1.78, 12.6; Pheterogeneity < 0.01), dominant model (1772C/T: TT/CT vs. CC: OR = 1.27, 95% CI: 1.04, 1.55; Pheterogeneity < 0.01, 1790G/A: AA/GA vs. GG: OR = 1.65, 95% CI: 1.05, 2.60; Pheterogeneity < 0.01), T allele versus C allele (T vs. C: OR = 1.42, 95% CI: 1.18, 1.70; Pheterogeneity < 0.01), and A allele versus G allele (A vs. G: OR = 1.83, 95% CI: 1.13, 2.96; Pheterogeneity < 0.01). On a subgroup analysis, the 1772 C/T polymorphism was significantly linked to higher risks for breast cancer, lung cancer, prostate cancer, and cervical cancer, whereas the 1790 G/A polymorphism was significantly linked to higher risks for lung cancer and prostate cancer. A significantly increased cancer risk was found in both Asians and Caucasians for 1772C/T polymorphism, whereas a significantly increased cancer risk was found in Caucasians in the heterozygote comparison and recessive model for 1790G/A polymorphism. Conclusions HIF-1α 1772 C/T and 1790 G/A polymorphisms are significantly associated with higher cancer risk.
Collapse
Affiliation(s)
- Xi Yang
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The association between HIF-1α polymorphism and cancer risk: a systematic review and meta-analysis. Tumour Biol 2013; 35:903-16. [PMID: 24046090 DOI: 10.1007/s13277-013-1160-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/28/2013] [Indexed: 02/05/2023] Open
Abstract
Epidemiological studies have assessed the association between HIF-1α polymorphisms and cancer risk. However, the results remained conflicting rather than conclusive. Therefore, we performed a systematic review to provide a complete picture and conducted a meta-analysis to derive a precise estimation. We searched PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases until July 2013 to identify eligible studies. Data sets (43) from 39 studies with a total of 10,841 cases and 14,682 controls were included. The most commonly investigated polymorphism was C1772T, followed by G1790A, C111A, and rs2057482. Overall, C1772T and G1790A but not rs2057482 were associated with increased risk for cancer. When stratified by cancer type, C1772T was associated with increased risk for cervical cancer (T/T vs. C/T+C/C: OR = 8.80, 95 % CI = 2.30-33.70), prostate cancer (T vs. C: OR = 1.54, 95 % CI = 1.04-2.30), and other cancers (T vs. C: OR = 1.42, 95 % CI = 1.07-1.89), but not oral, breast, colorectal, endometrial, lung, and bladder cancers or renal cell carcinoma. G1790A was associated with marginal but insignificant risk for prostate cancer (A vs. G: OR = 1.46, 95 % CI = 1.00-2.13, P = 0.056) and with increased risk for oral (A vs. G: OR = 9.66, 95 % CI = 1.31-71.15), lung (A vs. G: OR = 2.27, 95 % CI = 1.74-2.96), and other cancers (A vs. G: OR = 2.06, 95 % CI = 1.26-3.37) and renal cell carcinoma (A/A vs. G/A+G/G: OR = 3.05, 95 % CI = 1.36-6.84), but not breast, colorectal, cervical, or bladder cancer. Furthermore, we detected increased cancer risk in haplotypes TA and CA and in those carrying at least one risk allele, and decreased cancer risk in haplotype TG regarding C1772T and G1790A polymorphisms. Further well-designed studies on various cancer types are warranted to verify our findings.
Collapse
|
29
|
Zagouri F, Sergentanis TN, Gazouli M, Dimitrakakis C, Tsigginou A, Papaspyrou I, Chrysikos D, Lymperi M, Zografos GC, Antsaklis A, Dimopoulos MA, Papadimitriou CA. MMP-2 -1306C>T polymorphism in breast cancer: a case-control study in a South European population. Mol Biol Rep 2013; 40:5035-40. [PMID: 23661021 DOI: 10.1007/s11033-013-2604-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/29/2013] [Indexed: 01/16/2023]
Abstract
This case control study aims to investigate the role of MMP-2 -1306C>T polymorphism as a potential risk factor and possible prognostic marker for breast cancer in a South European population. 113 consecutive incident cases of histologically confirmed ductal breast cancer and 124 healthy controls were recruited. MMP-2 -1306C>T polymorphism was genotyped; multivariate logistic regression as well as Cox regression analysis were performed. MMP-2 -1306C>T status was not associated with breast cancer risk either at the total sample or at the subanalyses on premenopausal and postmenopausal women. At the survival analysis, a trend towards a favorable association between MMP-2 -1306C>T allele and disease-free survival as well as overall survival was observed. Regarding subanalyses on ER-negative and ER-positive cases, the favorable association implicating MMP-2 -1306C>T allele was particularly evident among ER-positive cases; no significant associations emerged among ER-negative cases. MMP-2 -1306C>T polymorphism does not seem to be a risk factor for breast cancer in South European population; however, a trend towards a favorable association with survival has been observed.
Collapse
Affiliation(s)
- Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, University of Athens, Vas Sofias Ave & Lourou str, 11521, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|