1
|
İbiş O, Yesari Selçuk A, Teber S, Baran M, Kaya A, Özcan S, Kefelioğlu H, Tez C. Complete mitogenomes of Turkish tree squirrels, Sciurus anomalus and S. vulgaris, (Sciuridae: Rodentia: Mammalia) and their phylogenetic status within the tribe Sciurini. Gene 2022; 841:146773. [PMID: 35905846 DOI: 10.1016/j.gene.2022.146773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/03/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
The genus Sciurus, a member of the family Sciuridae, is widely distributed in the Holarctic region. To better understand mitogenomic characteristics and to reveal internal phylogenetic relationships of the genus, 20 complete mitogenomes of Turkish tree squirrels were successfully sequenced for the first time, including 19 for S. anomalus (from 16,505 bp to 16,510 bp) and one for S. vulgaris (16,511 bp). The mitogenomes of two species were AT-biased. All tRNAs for two species displayed a typical clover-leaf structure, except for tRNASer(AGY). The tRNA Serine1 (S1)-GCT structure lacked the dihydrouridine (DHU) loop and stem. Based on mitogenomic dataset for phylogeny of Sciurinae, phylogenetic analyses (Bayesian Inference and Maximum Likelihood) did not support monophyly of Sciurus and proposed that S. anomalus, the most basal taxa in the Sciurini tribe, had at least five mitogenome lineages, which were also supported by network analysis. The dissimilarities among the five linegaes of S. anomalus ranged from 0.0042 (0.42%) to 0.0062 (0.62%) using K2P sequence pairwise distances. In addition to this mitogenomic analysis result, phylogenetic analyses using the CYTB + D-loop dataset proposed the existence of at least nine lineages for S. anomalus, which was different than those of the previous studies. The current study proposed that the use of mitogenomic data for reconstructing the phylogeny of Turkey' Sciurus holds an important value for revealing evolutionary relationships.
Collapse
Affiliation(s)
- Osman İbiş
- Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey; Vectors and Vector-Born Diseases Research and Implementation Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Yesari Selçuk
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey; Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey.
| | - Saffet Teber
- Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey.
| | - Mehmet Baran
- Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey.
| | - Alaettin Kaya
- Department of Basic Sciences, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey.
| | - Servet Özcan
- Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey; Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
| | - Haluk Kefelioğlu
- Department of Biology, Faculty of Science and Letters, Ondokuz Mayıs University, Samsun, Turkey.
| | - Coşkun Tez
- Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey; Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
2
|
Nummert G, Aaspõllu A, Kuningas K, Timm U, Hanski IK, Maran T. Genetic diversity in Siberian flying squirrel (Pteromys volans) in its western frontier with a focus on the Estonian population. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Yoshimura K, Shindo J, Kageyama I. Comparative Morphology of the Lingual Papillae and Their Connective Tissue Cores in the Tongue of Pallas's Squirrel (Callosciurus erythraeus thai, Kloss, 1917). Zoolog Sci 2018; 35:353-359. [PMID: 30079839 DOI: 10.2108/zs180020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We observed the morphology of the papilla linguae (filiform, fungiform, foliate, and vallate) and underlying connective tissue cores (CTCs) in Pallas's squirrel (Callosciurus erythraeus thai) using light and scanning electron microscopy. The tongue was caudally elongated and lacked the lingual torus. Filiform papillae were densely distributed along the dorsal surface of the apex, and the rostral and caudal parts of the corpus, but were attenuated in the lingual root. Two or three vallate papillae that were rounded or elongated were situated at the boundary between the caudal part of the corpus and lingual root, and foliate papillae and associated cone-like processes were observable in the lateral margin of the caudal end. The epithelial surface of filiform papillae had a main process and a few associated processes that varied between short and elongated, depending on the location. Filiform papillae CTCs appeared to have a few processes that caudally surrounded a concavity and were morphologically variable based on location. Moreover, fungiform papillae CTCs appeared to be columnar cores and had a shallow convex curve at the top. The Pallas's squirrel's tongue exhibited transitional morphological characteristics between Rodentia and other mammalian species, in that they lacked the lingual torus and had CTCs of lingual papillae that were somewhat morphologically similar to those of other non-Glires species, especially treeshrews and tamarins, rather than those of other Rodentia species.
Collapse
Affiliation(s)
- Ken Yoshimura
- 1 Department of Anatomy, Faculty of Life Dentistry, The Nippon Dental University at Niigata, Niigata, Japan
| | - Junji Shindo
- 2 Laboratory of Wildlife Science, Department of Environmental Bioscience, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ikuo Kageyama
- 1 Department of Anatomy, Faculty of Life Dentistry, The Nippon Dental University at Niigata, Niigata, Japan
| |
Collapse
|
4
|
Yalkovskaya LE, Bol'shakov VN, Sibiryakov PA, Borodin AV. Phylogeography of the Siberian flying squirrel (Pteromys volans L., 1785) and the history of the formation of the modern species range: New data. DOKL BIOCHEM BIOPHYS 2015; 462:181-4. [PMID: 26163215 DOI: 10.1134/s1607672915030114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 11/23/2022]
Affiliation(s)
- L E Yalkovskaya
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, ul. Vos'mogo Marta 202, Yekaterinburg, 620144, Russia,
| | | | | | | |
Collapse
|
5
|
Li B, Yu D, Cheng H, Storey KB, Zhang J. The complete mitochondrial genomes of Cynomys leucurus and C. ludovicianus (Rodentia: Sciuridae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3295-6. [DOI: 10.3109/19401736.2015.1015010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bingfei Li
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang Province, P.R. China,
| | - Danna Yu
- College of Life Science and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang Province, P.R. China, and
| | - Hongyi Cheng
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang Province, P.R. China,
- College of Life Science and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang Province, P.R. China, and
| | | | - Jiayong Zhang
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang Province, P.R. China,
- College of Life Science and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang Province, P.R. China, and
| |
Collapse
|
6
|
Tchitchek N, Safronetz D, Rasmussen AL, Martens C, Virtaneva K, Porcella SF, Feldmann H, Ebihara H, Katze MG. Sequencing, annotation and analysis of the Syrian hamster (Mesocricetus auratus) transcriptome. PLoS One 2014; 9:e112617. [PMID: 25398096 PMCID: PMC4232415 DOI: 10.1371/journal.pone.0112617] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/06/2014] [Indexed: 11/18/2022] Open
Abstract
Background The Syrian hamster (golden hamster, Mesocricetus auratus) is gaining importance as a new experimental animal model for multiple pathogens, including emerging zoonotic diseases such as Ebola. Nevertheless there are currently no publicly available transcriptome reference sequences or genome for this species. Results A cDNA library derived from mRNA and snRNA isolated and pooled from the brains, lungs, spleens, kidneys, livers, and hearts of three adult female Syrian hamsters was sequenced. Sequence reads were assembled into 62,482 contigs and 111,796 reads remained unassembled (singletons). This combined contig/singleton dataset, designated as the Syrian hamster transcriptome, represents a total of 60,117,204 nucleotides. Our Mesocricetus auratus Syrian hamster transcriptome mapped to 11,648 mouse transcripts representing 9,562 distinct genes, and mapped to a similar number of transcripts and genes in the rat. We identified 214 quasi-complete transcripts based on mouse annotations. Canonical pathways involved in a broad spectrum of fundamental biological processes were significantly represented in the library. The Syrian hamster transcriptome was aligned to the current release of the Chinese hamster ovary (CHO) cell transcriptome and genome to improve the genomic annotation of this species. Finally, our Syrian hamster transcriptome was aligned against 14 other rodents, primate and laurasiatheria species to gain insights about the genetic relatedness and placement of this species. Conclusions This Syrian hamster transcriptome dataset significantly improves our knowledge of the Syrian hamster's transcriptome, especially towards its future use in infectious disease research. Moreover, this library is an important resource for the wider scientific community to help improve genome annotation of the Syrian hamster and other closely related species. Furthermore, these data provide the basis for development of expression microarrays that can be used in functional genomics studies.
Collapse
Affiliation(s)
- Nicolas Tchitchek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Angela L Rasmussen
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Craig Martens
- Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America; Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Fabre PH, Jønsson KA, Douzery EJP. Jumping and gliding rodents: mitogenomic affinities of Pedetidae and Anomaluridae deduced from an RNA-Seq approach. Gene 2013; 531:388-97. [PMID: 23973722 DOI: 10.1016/j.gene.2013.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
An RNA-Seq strategy was used to obtain the complete set of protein-coding mitochondrial genes from two rodent taxa. Thanks to the next generation sequencing (NGS) 454 approach, we determined the complete mitochondrial DNA genome from Graphiurus kelleni (Mammalia: Rodentia: Gliridae) and partial mitogenome from Pedetes capensis (Pedetidae), and compared them with published rodent and outgroup mitogenomes. We finished the mitogenome sequencing by a series of amplicons using conserved PCR primers to fill the gaps corresponding to tRNA, rRNA and control regions. Phylogenetic analyses of the mitogenomes suggest a well-supported rodent phylogeny in agreement with nuclear gene trees. Pedetes groups with Anomalurus into the clade Anomaluromorpha, while Graphiurus branches within the squirrel-related clade. Moreover, Pedetes+Anomalurus branch with Castor into the mouse-related clade. Our study demonstrates the utility of NGS for obtaining new mitochondrial genomes as well as the importance of choosing adequate models of sequence evolution to infer the phylogeny of rodents.
Collapse
Affiliation(s)
- Pierre-Henri Fabre
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 UM2-CNRS-IRD), Université Montpellier II, Place Eugène Bataillon - CC 064 - 34095 Montpellier Cedex 5, France; Center for Macroecology Evolution and Climate at the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken, 15, DK-2100 Copenhagen Ø, Denmark
| | | | | |
Collapse
|
8
|
Schmucki R, Berrera M, Küng E, Lee S, Thasler WE, Grüner S, Ebeling M, Certa U. High throughput transcriptome analysis of lipid metabolism in Syrian hamster liver in absence of an annotated genome. BMC Genomics 2013; 14:237. [PMID: 23575280 PMCID: PMC3639954 DOI: 10.1186/1471-2164-14-237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/06/2013] [Indexed: 11/30/2022] Open
Abstract
Background Whole transcriptome analyses are an essential tool for understanding disease mechanisms. Approaches based on next-generation sequencing provide fast and affordable data but rely on the availability of annotated genomes. However, there are many areas in biomedical research that require non-standard animal models for which genome information is not available. This includes the Syrian hamster Mesocricetus auratus as an important model for dyslipidaemia because it mirrors many aspects of human disease and pharmacological responses. We show that complementary use of two independent next generation sequencing technologies combined with mapping to multiple genome databases allows unambiguous transcript annotation and quantitative transcript imaging. We refer to this approach as “triple match sequencing” (TMS). Results Contigs assembled from a normalized Roche 454 hamster liver library comprising 1.2 million long reads were used to identify 10’800 unique transcripts based on homology to RefSeq database entries from human, mouse, and rat. For mRNA quantification we mapped 82 million SAGE tags (SOLiD) from the same RNA source to the annotated hamster liver transcriptome contigs. We compared the liver transcriptome of hamster with equivalent data from human, rat, minipig, and cynomolgus monkeys to highlight differential gene expression with focus on lipid metabolism. We identify a cluster of five genes functionally related to HDL metabolism that is expressed in human, cynomolgus, minipig, and hamster but lacking in rat as a non-responder species for lipid lowering drugs. Conclusions The TMS approach is suited for fast and inexpensive transcript profiling in cells or tissues of species where a fully annotated genome is not available. The continuously growing number of well annotated reference genomes will further empower reliable transcript identification and thereby raise the utility of the method for any species of interest.
Collapse
Affiliation(s)
- Roland Schmucki
- F. Hoffmann-La Roche AG, pRED, Postfach, Basel, 4070, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|