1
|
Guo Y, Xu H, Huang M, Ruan Y. BLM promotes malignancy in PCa by inducing KRAS expression and RhoA suppression via its interaction with HDGF and activation of MAPK/ERK pathway. J Cell Commun Signal 2023; 17:757-772. [PMID: 36574142 PMCID: PMC10409945 DOI: 10.1007/s12079-022-00717-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) has long been the leading cause of cancer-associated deaths among male worldwide. Our previous studies have shown that Bloom syndrome protein (BLM) plays a vital role in PCa proliferation, yet the underlying molecular mechanism remains largely obscure. Mechanistically, BLM directly interacted with hepatoma-derived growth factor (HDGF). Functionally, BLM and HDGF knockdown resulted in the higher impairment of PC3 proliferation, clonogenicity, migration and invasion than that their counterpart with either BLM or HDGF knockdown exclusively. Of note, HDGF overexpression expedited, whereas its knockdown suppressed, PC3 proliferation, clonogenicity, migration and invasion. Additionally, the potentiation or attenuation was partially antagonized upon BLM depletion or overexpression. In line with the vitro data, the impact of BLM and HDGF on tumor growth was investigated in mouse xenograft models. ChIP-seq, dual-luciferase reporter and western blotting assays were employed to expound the regulatory network in PC3 cells. The results unveiled that HDGF activated KRAS and suppressed RhoA transcription, and that the function of HDGF was mediated, in part, by interaction with BLM. Accordingly, the MAPK/ERK pathway was activated. Moreover, the regulation of HDGF on KRAS and RhoA had a signal crosstalk. To recapitulate, BLM and HDGF may serve as novel prognostic markers and potential therapeutic targets in PCa.
Collapse
Affiliation(s)
- Yingchu Guo
- Department of Biomedicine, Medical College, Guizhou University, No. 2708, Huaxi Road South, Huaxi District, Guiyang, 550025, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, China
| | - Houqiang Xu
- Department of Biomedicine, Medical College, Guizhou University, No. 2708, Huaxi Road South, Huaxi District, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, China.
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China.
| | - Mengqiu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yong Ruan
- Department of Biomedicine, Medical College, Guizhou University, No. 2708, Huaxi Road South, Huaxi District, Guiyang, 550025, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Ma XY, Zhao JF, Ruan Y, Zhang WM, Zhang LQ, Cai ZD, Xu HQ. ML216-Induced BLM Helicase Inhibition Sensitizes PCa Cells to the DNA-Crosslinking Agent Cisplatin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248790. [PMID: 36557923 PMCID: PMC9788632 DOI: 10.3390/molecules27248790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Using standard DNA-damaging medicines with DNA repair inhibitors is a promising anticancer tool to achieve better therapeutic responses and reduce therapy-related side effects. Cell viability assay, neutral comet assay, western blotting (WB), and cell cycle and apoptosis analysis were used to determine the synergistic effect and mechanism of ML216, a Bloom syndrome protein (BLM) helicase inhibitor, and cisplatin (CDDP), a DNA-crosslinking agent, in PCa cells. Based on the online database research, our findings revealed that BLM was substantially expressed in PCa, which is associated with a bad prognosis for PCa patients. The combination of ML216 and CDDP improved the antiproliferative properties of three PCa cell lines. As indicated by the increased production of γH2AX and caspase-3 cleavage, ML216 significantly reduced the DNA damage-induced high expression of BLM, making PC3 more susceptible to apoptosis and DNA damage caused by CDDP. Furthermore, the combination of ML216 and CDDP increased p-Chk1 and p-Chk2 expression. The DNA damage may have triggered the ATR-Chk1 and ATM-Chk2 pathways simultaneously. Our results demonstrated that ML216 and CDDP combination therapy exhibited synergistic effects, and combination chemotherapy could be a novel anticancer tactic.
Collapse
Affiliation(s)
- Xiao-Yan Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Institute of Technology, College of Food and Pharmaceutical Engineering, Guiyang 550003, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jia-Fu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang-Ming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Guiyang 550014, China
| | - Lun-Qing Zhang
- Guizhou Institute of Technology, College of Food and Pharmaceutical Engineering, Guiyang 550003, China
| | - Zheng-Dong Cai
- Guizhou Institute of Technology, College of Food and Pharmaceutical Engineering, Guiyang 550003, China
| | - Hou-Qiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-13765056884
| |
Collapse
|
3
|
Wang CX, Zhang ZL, Yin QK, Tu JL, Wang JE, Xu YH, Rao Y, Ou TM, Huang SL, Li D, Wang HG, Li QJ, Tan JH, Chen SB, Huang ZS. Design, Synthesis, and Evaluation of New Quinazolinone Derivatives that Inhibit Bloom Syndrome Protein (BLM) Helicase, Trigger DNA Damage at the Telomere Region, and Synergize with PARP Inhibitors. J Med Chem 2020; 63:9752-9772. [PMID: 32697083 DOI: 10.1021/acs.jmedchem.0c00917] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage response (DDR) pathways are crucial for the survival of cancer cells and are attractive targets for cancer therapy. Bloom syndrome protein (BLM) is a DNA helicase that performs important roles in DDR pathways. Our previous study discovered an effective new BLM inhibitor with a quinazolinone scaffold by a screening assay. Herein, to better understand the structure-activity relationship (SAR) and biological roles of the BLM inhibitor, a series of new derivatives were designed, synthesized, and evaluated based on this scaffold. Among them, compound 9h exhibited nanomolar inhibitory activity and binding affinity for BLM. 9h could effectively disrupt BLM recruitment to DNA in cells. Furthermore, 9h inhibited the proliferation of the colorectal cell line HCT116 by significantly triggering DNA damage in the telomere region and inducing apoptosis, especially in combination with a poly (ADP-ribose) polymerase (PARP) inhibitor. This result suggested a synthetic lethal effect between the BLM and PARP inhibitors in DDR pathways.
Collapse
Affiliation(s)
- Chen-Xi Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zi-Lin Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qi-Kun Yin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Li Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-En Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Gen Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Weeks SE, Metge BJ, Samant RS. The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci 2019; 76:4511-4524. [PMID: 31338556 PMCID: PMC6841648 DOI: 10.1007/s00018-019-03231-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 01/17/2023]
Abstract
The nucleolus is a sub-nuclear body known primarily for its role in ribosome biogenesis. Increased number and/or size of nucleoli have historically been used by pathologists as a prognostic indicator of cancerous lesions. This increase in nucleolar number and/or size is classically attributed to the increased need for protein synthesis in cancer cells. However, evidences suggest that the nucleolus plays critical roles in many cellular functions in both normal cell biology and disease pathologies, including cancer. As new functions of the nucleolus are elucidated, there is mounting evidence to support the role of the nucleolus in regulating additional cellular functions, particularly response to cellular stressors, maintenance of genome stability, and DNA damage repair, as well as the regulation of gene expression and biogenesis of several ribonucleoproteins. This review highlights the central role of the nucleolus in carcinogenesis and cancer progression and discusses how cancer cells may become "addicted" to nucleolar functions.
Collapse
Affiliation(s)
- Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, Lee DF. Osteosarcoma: Molecular Pathogenesis and iPSC Modeling. Trends Mol Med 2017; 23:737-755. [PMID: 28735817 DOI: 10.1016/j.molmed.2017.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Rare hereditary disorders provide unequivocal evidence of the importance of genes in human disease pathogenesis. Familial syndromes that predispose to osteosarcomagenesis are invaluable in understanding the underlying genetics of this malignancy. Recently, patient-derived induced pluripotent stem cells (iPSCs) have been successfully utilized to model Li-Fraumeni syndrome (LFS)-associated bone malignancy, demonstrating that iPSCs can serve as an in vitro disease model to elucidate osteosarcoma etiology. We provide here an overview of osteosarcoma predisposition syndromes and review recently established iPSC disease models for these familial syndromes. Merging molecular information gathered from these models with the current knowledge of osteosarcoma biology will help us to gain a deeper understanding of the pathological mechanisms underlying osteosarcomagenesis and will potentially aid in the development of future patient therapies.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Brittany E Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; These authors contributed equally to this work
| | - Linchao Lu
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lisa L Wang
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Bloom's syndrome: Why not premature aging?: A comparison of the BLM and WRN helicases. Ageing Res Rev 2017; 33:36-51. [PMID: 27238185 DOI: 10.1016/j.arr.2016.05.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
Genomic instability is a hallmark of cancer and aging. Premature aging (progeroid) syndromes are often caused by mutations in genes whose function is to ensure genomic integrity. The RecQ family of DNA helicases is highly conserved and plays crucial roles as genome caretakers. In humans, mutations in three RecQ genes - BLM, WRN, and RECQL4 - give rise to Bloom's syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. WS is a prototypic premature aging disorder; however, the clinical features present in BS and RTS do not indicate accelerated aging. The BLM helicase has pivotal functions at the crossroads of DNA replication, recombination, and repair. BS cells exhibit a characteristic form of genomic instability that includes excessive homologous recombination. The excessive homologous recombination drives the development in BS of the many types of cancers that affect persons in the normal population. Replication delay and slower cell turnover rates have been proposed to explain many features of BS, such as short stature. More recently, aberrant transcriptional regulation of growth and survival genes has been proposed as a hypothesis to explain features of BS.
Collapse
|
7
|
Distinct functions of human RecQ helicases during DNA replication. Biophys Chem 2016; 225:20-26. [PMID: 27876204 DOI: 10.1016/j.bpc.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 12/31/2022]
Abstract
DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition.
Collapse
|
8
|
Lam DC, Luo SY, Deng W, Kwan JS, Rodriguez-Canales J, Cheung AL, Cheng GH, Lin CH, Wistuba II, Sham PC, Wan TS, Tsao SW. Oncogenic mutation profiling in new lung cancer and mesothelioma cell lines. Onco Targets Ther 2015; 8:195-209. [PMID: 25653542 PMCID: PMC4303463 DOI: 10.2147/ott.s71242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Thoracic tumor, especially lung cancer, ranks as the top cancer mortality in most parts of the world. Lung adenocarcinoma is the predominant subtype and there is increasing knowledge on therapeutic molecular targets, namely EGFR, ALK, KRAS, and ROS1, among lung cancers. Lung cancer cell lines established with known clinical characteristics and molecular profiling of oncogenic targets like ALK or KRAS could be useful tools for understanding the biology of known molecular targets as well as for drug testing and screening. Materials and methods Five new cancer cell lines were established from pleural fluid or biopsy tissues obtained from Chinese patients with primary lung adenocarcinomas or malignant pleural mesothelioma. They were characterized by immunohistochemistry, growth kinetics, tests for tumorigenicity, EGFR and KRAS gene mutations, ALK gene rearrangement and OncoSeq mutation profiling. Results These newly established lung adenocarcinoma and mesothelioma cell lines were maintained for over 100 passages and demonstrated morphological and immunohistochemical features as well as growth kinetics of tumor cell lines. One of these new cell lines bears EML4-ALK rearrangement variant 2, two lung cancer cell lines bear different KRAS mutations at codon 12, and known single nucleotide polymorphism variants were identified in these cell lines. Discussion Four new lung adenocarcinoma and one mesothelioma cell lines were established from patients with different clinical characteristics and oncogenic mutation profiles. These characterized cell lines and their mutation profiles will provide resources for exploration of lung cancer and mesothelioma biology with regard to the presence of known oncogenic mutations.
Collapse
Affiliation(s)
- David Cl Lam
- Department of Medicine, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Susan Y Luo
- Department of Medicine, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wen Deng
- School of Nursing, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Johnny Sh Kwan
- Department of Psychiatry, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas at Houston, Houston, TX, USA
| | - Annie Lm Cheung
- Department of Anatomy, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Grace Hw Cheng
- Center for Genome Sciences, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chi-Ho Lin
- Center for Genome Sciences, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas at Houston, Houston, TX, USA
| | - Pak C Sham
- Center for Genome Sciences, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Thomas Sk Wan
- Department of Pathology, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Sai-Wah Tsao
- Department of Anatomy, University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
9
|
Swan MK, Legris V, Tanner A, Reaper PM, Vial S, Bordas R, Pollard JR, Charlton PA, Golec JMC, Bertrand JA. Structure of human Bloom's syndrome helicase in complex with ADP and duplex DNA. ACTA ACUST UNITED AC 2014; 70:1465-75. [PMID: 24816114 DOI: 10.1107/s139900471400501x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/05/2014] [Indexed: 01/18/2023]
Abstract
Bloom's syndrome is an autosomal recessive genome-instability disorder associated with a predisposition to cancer, premature aging and developmental abnormalities. It is caused by mutations that inactivate the DNA helicase activity of the BLM protein or nullify protein expression. The BLM helicase has been implicated in the alternative lengthening of telomeres (ALT) pathway, which is essential for the limitless replication of some cancer cells. This pathway is used by 10-15% of cancers, where inhibitors of BLM are expected to facilitate telomere shortening, leading to apoptosis or senescence. Here, the crystal structure of the human BLM helicase in complex with ADP and a 3'-overhang DNA duplex is reported. In addition to the helicase core, the BLM construct used for crystallization (residues 640-1298) includes the RecQ C-terminal (RQC) and the helicase and ribonuclease D C-terminal (HRDC) domains. Analysis of the structure provides detailed information on the interactions of the protein with DNA and helps to explain the mechanism coupling ATP hydrolysis and DNA unwinding. In addition, mapping of the missense mutations onto the structure provides insights into the molecular basis of Bloom's syndrome.
Collapse
Affiliation(s)
- Michael K Swan
- Vertex Pharmaceuticals (Europe), Abingdon, Oxfordshire, England
| | - Valerie Legris
- Vertex Pharmaceuticals (Europe), Abingdon, Oxfordshire, England
| | - Adam Tanner
- Vertex Pharmaceuticals (Europe), Abingdon, Oxfordshire, England
| | - Philip M Reaper
- Vertex Pharmaceuticals (Europe), Abingdon, Oxfordshire, England
| | - Sarah Vial
- Vertex Pharmaceuticals (Europe), Abingdon, Oxfordshire, England
| | - Rebecca Bordas
- Vertex Pharmaceuticals (Europe), Abingdon, Oxfordshire, England
| | - John R Pollard
- Vertex Pharmaceuticals (Europe), Abingdon, Oxfordshire, England
| | | | | | - Jay A Bertrand
- Vertex Pharmaceuticals (Europe), Abingdon, Oxfordshire, England
| |
Collapse
|