1
|
Zhao Y, Deng S, Li C, Cao J, Wu A, Chen M, Ma X, Wu S, Lian Z. The Role of Retinoic Acid in Spermatogenesis and Its Application in Male Reproduction. Cells 2024; 13:1092. [PMID: 38994945 PMCID: PMC11240464 DOI: 10.3390/cells13131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China;
| | - Jingchao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Aowu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Xuehai Ma
- Xinjiang Key Laboratory of Mental Development and Learning Science, College of Psychology, Xinjiang Normal University, Urumqi 830017, China
| | - Sen Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| |
Collapse
|
2
|
Yao W, Li Y, Li B, Luo H, Xu H, Pan Z, Xie Z, Li Q. Epigenetic regulation of bovine spermatogenic cell-specific gene boule. PLoS One 2015; 10:e0128250. [PMID: 26030766 PMCID: PMC4451259 DOI: 10.1371/journal.pone.0128250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Non-primate mammals have two deleted azoospermia (DAZ) family genes, DAZL and Boule; genes in this family encode RNA-binding proteins essential for male fertility in diverse animals. Testicular DAZL transcription is regulated by epigenetic factors such as DNA methylation. However, nothing is known about the epigenetic regulation of Boule. Here, we explored the role of DNA methylation in the regulation of the bovine Boule (bBoule) gene. We found that a long CpG island (CGI) in the bBoule promoter was hypermethylated in the testes of cattle-yak hybrids with low bBoule expression, whereas cattle had relatively low methylation levels (P < 0.01), and there was no difference in the methylation level in the short CGI of the gene body between cattle and cattle-yak hybrids (P > 0.05). We identified a 107 bp proximal core promoter region of bBoule. Intriguingly, the differences in the methylation level between cattle and cattle-yak hybrids were larger in the core promoter than outside the core promoter. An in vitro methylation assay showed that the core promoter activity of bBoule decreased significantly after M.SssI methylase treatment (P < 0.01). We also observed dramatically increased bBoule transcription in bovine mammary epithelial cells (BMECs) after treatment with the methyltransferase inhibitor 5-Aza-dC. Taken together, our results establish that methylation status of the core promoter might be involved in testicular bBoule transcription, and may provide new insight into the epigenetic regulation of DAZ family genes and clinical insights regarding male infertility.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongtao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- * E-mail:
| |
Collapse
|