1
|
Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S. Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 2024; 11:1370951. [PMID: 38765810 PMCID: PMC11099240 DOI: 10.3389/fnut.2024.1370951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.
Collapse
Affiliation(s)
- Praful Saha
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dishant Maniar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Simran Sahare
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
2
|
Shinde S, Balasubramaniam AK, Mulay V, Saste G, Girme A, Hingorani L. Recent Advancements in Extraction Techniques of Ashwagandha ( Withania somnifera) with Insights on Phytochemicals, Structural Significance, Pharmacology, and Current Trends in Food Applications. ACS OMEGA 2023; 8:40982-41003. [PMID: 37970011 PMCID: PMC10633886 DOI: 10.1021/acsomega.3c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/17/2023]
Abstract
Ashwagandha, also known as Withania somnifera (WS), is an ayurvedic botanical plant with numerous applications in dietary supplements and traditional medicines worldwide. Due to the restorative qualities of its roots, WS has potent therapeutic value in traditional Indian (Ayurvedic, Unani, Siddha) and modern medicine recognized as the "Indian ginseng". The presence of phytochemical bioactive compounds such as withanolides, withanosides, alkaloids, flavonoids, and phenolic compounds has an important role in the therapeutic and nutritional properties of WS. Thus, the choice of WS plant part and extraction solvents, with conventional and modern techniques, plays a role in establishing WS as a potential nutraceutical product. WS has recently made its way into food supplements and products, such as baked goods, juices, beverages, sweets, and dairy items. The review aims to cover the key perspectives about WS in terms of plant description, phytochemistry, structural significance, and earlier reported extraction methodologies along with the analytical and pharmacological landscape in the area. It also attempts to iterate the key limitations and further insights into extraction techniques and bioactive standardization with the regulatory framework. It presents a key to the future development of prospective applications in foods such as food supplements or functional foods.
Collapse
Affiliation(s)
- Sunil Shinde
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | | | - Vallabh Mulay
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Ganesh Saste
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| |
Collapse
|
3
|
Mudassir Jeelani S, Shahnawaz M, Prakash Gupta A, Lattoo SK. Phytochemical Diversity in Relation to Cytogenetic Variability in Inula racemosa Hook.f., an Endangered Medicinal Plant of Himalayas. Chem Biodivers 2022; 19:e202200486. [PMID: 36263992 DOI: 10.1002/cbdv.202200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
Inula racemosa, a resourceful critically endangered medicinal herb in the Himalayas is traditionally utilized to cure various human disorders. The species is a wealthy source of sesquiterpene lactones has many pharmacological properties. To quantify and identify the best genetic stocks for a maximum build-up of desired metabolites (isoalantolactone and alantolactone) among existent cytotypes in the species, LC-MS/MS analysis was made. The other comprehensive experiments carried out at present included detailed meiotic examinations of different populations collected from different areas of Kashmir Himalayas. The results presented the occurrence of variable chromosome numbers as n=10 and n=20 in different populations, but the tetraploid cytotype (n=20) is new for the species. The LC-MS/MS investigation revealed significant variability in the content of sesquiterpene lactones in different plant tissues (stem, leaf, and root). An upsurge in the quantity of isoalantolactone and alantolactone was noticed with increasing ploidy levels along the increasing altitudes. Therefore, a habit to accumulate abundant quantities of secondary metabolites and increased adaptability by species/cytotypes thriving at higher altitudes is seen among tetraploid cytotypes during the present investigation. Also, the chromosomal variations seem to enhance the flexibility of polyploid species primarily at upper elevations. Thus, the present study strongly provides quantification of elite cytotypes/chemotypes with optimum concentration of secondary metabolites.
Collapse
Affiliation(s)
- Syed Mudassir Jeelani
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mohd Shahnawaz
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ajai Prakash Gupta
- Quality Control and Quality Assurance Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
4
|
Singh M, Agrawal S, Afzal O, Altamimi ASA, Redhwan A, Alshammari N, Patel M, Adnan M, Elasbali AM, Khan S. Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.). Metabolites 2022; 12:854. [PMID: 36144259 PMCID: PMC9502510 DOI: 10.3390/metabo12090854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed at optimizing conditions for increased withanolide production in Withania somnifera. The elicitors used for the foliar spray on the aerial parts of the plant were salicylic acid, jasmonic acid, and chitosan for the enhancement of withanolides in Withania somnifera under different environmental regimes. Three different elicitors, i.e., chitosan, jasmonic acid and salicylic acid, were applied on the plants through foliar route every 15th day for 6 months, and later plants were used for sample preparation. Further, the elicitors were used in different concentration, i.e., jasmonic acid (50, 200 and 400 ppm), chitosan (10, 50 and 100 ppm) and salicylic acid (0.5, 1 and 2 ppm). The elicitors were sprayed on the foliar parts of the plant between 10:00-11:00 a.m. on application days. For elicitor spray, a calibrated sprayer was used. The withanolide A/withaferin A was quantified through HPLC. It was found that in an open environment, maximum withaferin A content, i.e., 0.570 mg/g (DW), was recorded with jasmonic acid (50 ppm) treatment in comparison to control (0.067 mg/g DW). Thus, there was an 8.5-fold increase in the withaferin A content. Maximum withanolide A content of 0.352 mg/g (DW) was recorded when chitosan (50 ppm) was sprayed, while in the control, withanolide A content was recorded to be 0.031 mg/g (DW); thus, chitosan application increased the production of withanolide A by 11.3-fold. Under controlled conditions, maximum withaferin A content of 1.659 mg/g (DW) was recorded when plants were sprayed with chitosan (100 ppm), which was 8.1 times greater than the control content of 0.203 mg/g (DW). Maximum withanolide A content of 0.460 mg/g (DW) was recorded when chitosan (100 ppm) was applied, whereas in the control, withanolide A content was found to be 0.061 mg/g (DW). Thus, foliar spraying of elicitors in very low concentrations can serve as a low-cost, eco-friendly, labor-intensive and elegant alternative approach that can be practiced by farmers for the enhancement, consistent production and improved yield of withanolide A/withaferin A. This can be a suitable way to enhance plant productivity, thus increasing the availability of withanolide A and withaferin A for the health and pharma industry.
Collapse
Affiliation(s)
- Manali Singh
- Department of Biochemistry, C.B.S.H., G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India
- Department of Biotechnology, Invertis University, Invertis Village, Bareilly- Lucknow National Highway, NH-24, Bareilly 243123, India
| | - Sanjeev Agrawal
- Department of Biochemistry, C.B.S.H., G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parole University, Vadodara 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Science, Qurayyat, Jouf University, Sakaka 72341, Saudi Arabia
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Saharanpur 247554, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
5
|
Thorat SA, Kaniyassery A, Poojari P, Rangel M, Tantry S, Kiran KR, Joshi MB, Rai PS, Botha AM, Muthusamy A. Differential Gene Expression and Withanolides Biosynthesis During in vitro and ex vitro Growth of Withania somnifera (L.) Dunal. FRONTIERS IN PLANT SCIENCE 2022; 13:917770. [PMID: 35774803 PMCID: PMC9237602 DOI: 10.3389/fpls.2022.917770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 05/03/2023]
Abstract
Ashwagandha (Withania somnifera L. Dunal) is a medicinally important plant with withanolides as its major bioactive compounds, abundant in the roots and leaves. We examined the influence of plant growth regulators (PGRs) on direct organogenesis, adventitious root development, withanolide biosynthetic pathway gene expression, withanolide contents, and metabolites during vegetative and reproductive growth phases under in vitro and ex vitro conditions. The highest shooting responses were observed with 6-benzylaminopurine (BAP) (2.0 mg L-1) + Kinetin (KIN) (1.5 mg L-1) supplementation. Furthermore, BAP (2.0 mg L-1) + KIN (1.5 mg L-1) + gibberellic acid (GA3) (0.5 mg L-1) exhibited better elongation responses with in vitro flowering. Half-strength MS medium with indole-3-butyric acid (IBA) (1.5 mg L-1) exhibited the highest rooting responses and IBA (1.0 mg L-1) with highest fruits, and overall biomass. Higher contents of withaferin A (WFA) [∼8.2 mg g-1 dry weight (DW)] were detected in the reproductive phase, whereas substantially lower WFA contents (∼1.10 mg g-1 DW) were detected in the vegetative phase. Cycloartenol synthase (CAS) (P = 0.0025), sterol methyltransferase (SMT) (P = 0.0059), and 1-deoxy-D-xylulose-5-phosphate reductase (DXR) (P = 0.0375) genes resulted in a significant fold change in expression during the reproductive phase. The liquid chromatography-mass spectrometry (LC-MS) analysis revealed metabolites that were common (177) and distinct in reproductive (218) and vegetative (167) phases. Adventitious roots cultured using varying concentrations of indole-3-acetic acid (IAA) (0.5 mg L-1) + IBA (1.0 mg L-1) + GA3 (0.2 mg L-1) exhibited the highest biomass, and IAA (0.5 mg L-1) + IBA (1.0 mg L-1) exhibited the highest withanolides content. Overall, our findings demonstrate the peculiarity of withanolide biosynthesis during distinct growth phases, which is relevant for the large-scale production of withanolides.
Collapse
Affiliation(s)
- Sachin Ashok Thorat
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Arya Kaniyassery
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Poornima Poojari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Melissa Rangel
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shashikala Tantry
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kodsara Ramachandra Kiran
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Manjunath B. Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Padmalatha S. Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anna-Maria Botha
- Department of Genetics, Faculty of Agriculture, University of Stellenbosch, Stellenbosch, South Africa
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
6
|
Srivastava A, Siddiqui S, Ahmad R, Mehrotra S, Ahmad B, Srivastava AN. Exploring nature's bounty: identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation. J Biomol Struct Dyn 2022; 40:1858-1908. [PMID: 33246398 PMCID: PMC7755033 DOI: 10.1080/07391102.2020.1835725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/02/2020] [Indexed: 10/25/2022]
Abstract
Coronaviruses are etiological agents of extreme human and animal infection resulting in abnormalities primarily in the respiratory tract. Presently, there is no defined COVID-19 intervention and clinical trials of prospective therapeutic agents are still in the nascent stage. Withania somnifera (L.) Dunal (WS), is an important medicinal plant in Ayurveda. The present study aimed to evaluate the antiviral potential of selected WS phytoconstituents against the novel SARS-CoV-2 target proteins and human ACE2 receptor using in silico methods. Most of the phytoconstituents displayed good absorption and transport kinetics and were also found to display no associated mutagenic or adverse effect(s). Molecular docking analyses revealed that most of the WS phytoconstituents exhibited potent binding to human ACE2 receptor, SAR-CoV and SARS-CoV-2 spike glycoproteins as well as the two main SARS-CoV-2 proteases. Most of the phytoconstituents were predicted to undergo Phase-I metabolism prior to excretion. All phytoconstituents had favorable bioactivity scores with respect to various receptor proteins and target enzymes. SAR analysis revealed that the number of oxygen atoms in the withanolide backbone and structural rearrangements were crucial for effective binding. Molecular simulation analyses of SARS-CoV-2 spike protein and papain-like protease with Withanolides A and B, respectively, displayed a stability profile at 300 K and constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In a nutshell, WS phytoconstituents warrant further investigations in vitro and in vivo to unravel their molecular mechanism(s) and modes of action for their future development as novel antiviral agents against COVID-19.
Collapse
Affiliation(s)
- Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Sudhir Mehrotra
- Department of Biochemistry, University of Lucknow, Lucknow, UP, India
| | - Bilal Ahmad
- Research Cell, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - A. N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| |
Collapse
|
7
|
Shilpashree HB, Sudharshan SJ, Shasany AK, Nagegowda DA. Molecular characterization of three CYP450 genes reveals their role in withanolides formation and defense in Withania somnifera, the Indian Ginseng. Sci Rep 2022; 12:1602. [PMID: 35102209 PMCID: PMC8803918 DOI: 10.1038/s41598-022-05634-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
The medicinal properties of Ashwagandha (Withania somnifera) are attributed to triterpenoid steroidal lactones, withanolides, which are proposed to be derived from phytosterol pathway, through the action of cytochrome P450 (CYP450) enzymes. Here, we report the characterization of three transcriptome-mined CYP450 genes (WsCYP749B1, WsCYP76 and WsCYP71B10), which exhibited induced expression in response to methyl jasmonate treatment indicating their role in secondary metabolism. All three WsCYP450s had the highest expression in leaf compared to other tissues. In planta characterization of WsCYP450s through virus induced gene silencing (VIGS) and transient overexpression approaches and subsequent metabolite analysis indicated differential modulation in the accumulation of certain withanolides in W. somnifera leaves. While WsCYP749B1-vigs significantly enhanced withaferin A (~ 450%) and reduced withanolide A (~ 50%), its overexpression drastically led to enhanced withanolide A (> 250%) and withanolide B (> 200%) levels and reduced 12-deoxywithastramonolide (~ 60%). Whereas WsCYP76-vigs led to reduced withanolide A (~ 60%) and its overexpression increased withanolide A (~ 150%) and reduced 12-deoxywithastramonolide (~ 60%). Silencing and overexpression of WsCYP71B10 resulted in significant reduction of withanolide B (~ 50%) and withanolide A (~ 60%), respectively. Further, while VIGS of WsCYP450s negatively affected the expression of pathogenesis-related (PR) genes and compromised tolerance to bacteria P. syringae DC3000, their overexpression in W. somnifera and transgenic tobacco led to improved tolerance to the bacteria. Overall, these results showed that the identified WsCYP450s have a role in one or several steps of withanolides biosynthetic pathway and are involved in conferring tolerance to biotic stress.
Collapse
Affiliation(s)
- H B Shilpashree
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - S J Sudharshan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - Ajit K Shasany
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India.
| |
Collapse
|
8
|
Chauhan S, Mandliya T, Jain D, Joshi A, Lal Khatik C, Singh A, Upadhyay SK, Jain R. Early selective strategies for higher yielding bio-economic Indian Ginseng based on genotypic study through metabolic and molecular markers. Saudi J Biol Sci 2022; 29:3051-3061. [PMID: 35531148 PMCID: PMC9073062 DOI: 10.1016/j.sjbs.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
|
9
|
Jeelani SM, Singh J, Sharma A, Rather GA, Ali SA, Gupta AP, Singh S, Lattoo SK. In-vitro cytotoxicity in relation to chemotypic diversity in diploid and tetraploid populations of Gentiana kurroo Royle. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:113966. [PMID: 33647427 DOI: 10.1016/j.jep.2021.113966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiana kurroo is a multipurpose critically endangered medicinal herb prescribed as medicine in Ayurveda in India and exhibits various pharmacological properties including anti-cancer activity. The species is rich repository of pharmacologically active secondary metabolites together with secoiridoidal glycosides. AIM OF THE STUDY The study aimed to investigate the chemical diversity in different populations/cytotypes prevailing in G. kurroo to identify elite genetic stocks in terms of optimum accumulation/biosynthesis of desired metabolites and having higher in-vitro cytotoxicity potential in relation to chemotypic diversity. MATERIAL AND METHODS The wild plants of the species were collected from different ranges of altitudes from the Kashmir Himalayas. For cytological evaluation, the standard meiotic analysis was performed. The standard LC-MS/MS technique was employed for phytochemical analysis based on different marker compounds viz. sweroside, swertiamarin, and gentiopicroside. Different tissues such as root-stock, aerial parts, and flowers were used for chemo-profiling. Further, the methanolic extracts of diploid and tetraploid cytotypes were assessed for cytotoxic activity by using MTT assay against four different human cancer cell lines. RESULTS The quantification of major bioactive compounds based on tissue- and location-specific comparison, as well as in-vitro cytotoxic potential among extant cytotypes, was evaluated. The comprehensive cytomorphological studies of the populations from NW Himalayas revealed the occurrence of different chromosomal races viz. n = 13, 26. The tetraploid cytotype was hitherto unreported. The tissue-specific chemo-profiling revealed relative dominance of different phytoconstituents in root-stock. There was a noticeable increase in the quantity of the analyzed compounds in relation to increasing ploidy status along the increasing altitudes. The MTT assay of methanolic extracts of diploid and tetraploid cytotypes displayed significant cytotoxicity potential in tetraploids. The root-stock extracts of tetraploids were highly active extracts with IC50 value ranges from 5.65 to 8.53 μg/mL against HCT-116 colon cancer. CONCLUSION The chemical evaluation of major bioactive compounds in diverse cytotypes from different plant parts along different altitudes presented an appreciable variability in sweroside, swertiamarin, and gentiopicroside contents. Additionally, the concentrations of these phytoconstituents varied for cytotoxicity potential among different screened cytotypes. This quantitative difference of active bio-constituents was in correspondence with the growth inhibition percentage of different tested cancer cell lines. Thus, the present investigation strongly alludes towards a prognostic approach for the identification of elite cytotypes/chemotypes with significant pharmacological potential.
Collapse
Affiliation(s)
- Syed Mudassir Jeelani
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| | - Jasvinder Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Arti Sharma
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Gulzar A Rather
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sheikh Abid Ali
- Division of Biotechnology, CSIR- Indian Institute of Integrative Medicine, Branch Laboratory, Sanat Nagar, Srinagar, 190005, India
| | - Ajai Prakash Gupta
- Quality Control and Quality Assurance Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Shashank Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
10
|
Tetali SD, Acharya S, Ankari AB, Nanakram V, Raghavendra AS. Metabolomics of Withania somnifera (L.) Dunal: Advances and applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113469. [PMID: 33075439 DOI: 10.1016/j.jep.2020.113469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/30/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera L. (Solanaceae), commonly known as Ashwagandha or Indian ginseng, is used in Ayurveda (Indian system of traditional medicine) for vitality, cardio-protection and treating other ailments, such as neurological disorders, gout, and skin diseases. AIM OF THE REVIEW We present a critical overview of the information on the metabolomics of W. somnifera and highlight the significance of the technique for use in quality control of medicinal products. We have also pointed out the use of metabolomics to distinguish varieties and to identify best methods of cultivation, collection, as well as extraction. MATERIAL AND METHODS The relevant information on medicinal value, phytochemical studies, metabolomics of W. somnifera, and their applications were collected from a rigorous electronic search through scientific databases, including Scopus, PubMed, Web of Science and Google Scholar. Structures of selected metabolites were from the PubChem. RESULTS The pharmacological activities of W. somnifera were well documented. Roots are the most important parts of the plant used in Ayurvedic preparations. Stem and leaves also have a rich content of bioactive phytochemicals like steroidal lactones, alkaloids, and phenolic acids. Metabolomic studies revealed that metabolite profiles of W. somnifera depended on plant parts collected and the developmental stage of the plant, besides the season of sample collection and geographical location. The levels of withanolides were variable, depending on the morpho/chemotypes within the species of W. somnifera. Although studies on W. somnifera were initiated several years ago, the complexity of secondary metabolites was not realized due to the lack of adequate and fool-proof technology for phytochemical fingerprinting. Sophistications in chromatography coupled to mass spectrometry facilitated the discovery of several new metabolites. Mutually complementary techniques like LC-MS, GC-MS, HPTLC, and NMR were employed to obtain a comprehensive metabolomic profile. Subsequent data analyses and searches against spectral databases enabled the annotation of signals and dereplication of metabolites in several numbers without isolating them individually. CONCLUSIONS The present review provides a critical update of metabolomic data and the diverse application of the technique. The identification of parameters for standardization and quality control of herbal products is essential to facilitate mandatory checks for the purity of formulation. Such studies would enable us to identify the best geographical location of plants and the time of collection. We recommend the use of metabolomic analysis of herbal products based on W. somnifera for quality control as well as the discovery of novel bioactive compounds.
Collapse
Affiliation(s)
- Sarada D Tetali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India.
| | - Satyabrata Acharya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Aditya B Ankari
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Vadthyavath Nanakram
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India.
| |
Collapse
|
11
|
Tomar V, Beuerle T, Sircar D. A validated HPTLC method for the simultaneous quantifications of three phenolic acids and three withanolides from Withania somnifera plants and its herbal products. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:154-160. [PMID: 31200247 DOI: 10.1016/j.jchromb.2019.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/03/2023]
Abstract
A simple, rapid and selective high-performance thin-layer chromatographic (HPTLC) method has been developed and validated for simultaneous determination of three withanolides (withaferin A, withanone and withanolide A) and three phenolic acids (caffeic acid, ferulic acid and benzoic acid) from different parts (root, stem and leaf) of Withania somnifera and its two commercially available polyherbal formulations. The extraction efficiency of withanolides and phenolic acids were tested using two solvents, chloroform and methanol, respectively. HPTLC separation was performed on silica coated aluminium plates Si 60F254; using toluene, ethyl acetate and acetic acid (60:40:4). The samples were quantitated at 231 nm. The purity and identity of peaks of all the six analytes were confirmed by matching Rf values and UV-spectrum with authentic standards. The identity of three withanolides was further confirmed by positive ion electrospray ionization mass spectrometry (ESI-MS/MS) analyses. The developed method was validated for sensitivity, linearity, reproducibility, accuracy, the limit of detection (LOD) and limit of quantification (LOQ) following the guidelines of the International Conference on Harmonization (ICH). The method was found to be linear (r > 0.99) in the range of 50-2000 ng/band for benzoic acid and 50-1000 ng/band for the other five studied metabolites. This simple and accurate HPTLC method provided enhanced resolution of studied analytes as compared to other phytoconstituents present in W. somnifera extracts. It has also been successfully applied in the analysis and quantification of two polyherbal formulations containing W. somnifera plant parts.
Collapse
Affiliation(s)
- Varsha Tomar
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Till Beuerle
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany
| | - Debabrata Sircar
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
12
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
13
|
Tripathi N, Shrivastava D, Ahmad Mir B, Kumar S, Govil S, Vahedi M, Bisen PS. Metabolomic and biotechnological approaches to determine therapeutic potential of Withania somnifera (L.) Dunal: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:127-136. [PMID: 30466971 DOI: 10.1016/j.phymed.2017.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/26/2017] [Accepted: 08/20/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND Withania somnifera, a high value medicinal plant is a major source of pharmaceutically important active compounds withanolides. Withania somnifera has been used in ayurveda as health restorative and anabolic agent besides having anti-arthritic, antidepressant, anti-microbial, anti-inflammatory, anti-diabetic, anti-stress, neuroprotective and cardio-protective activities. HYPOTHESIS/PURPOSE The mining of the compound(s) of interest offers opportunity to identify desired attributes in the therapeutic area of interest. Metabolomic has become an important tool in the field of pharmacological and functional genomics of medicinal plants. The analysis supports the information regarding differential outline of the gene expression for increasing important withanolides viz. withanolide A and withaferin A in W. somnifera. STUDY DESIGN The bioinformatics and biotechnological approaches viz. tissue culture, genetic transformation, genomic, transcriptomic, proteomic, gene mining and metabolomic studies have opened new windows about engineering of withanolide production. METHODS Target and network analysis for maximum therapeutic potential of Withania somnifera have been determined by employing Genemania software for finding interactions among various human genes that are being affected by active constituents. RESULTS Some of the major bioactive compounds of Withania somnifera have been discussed on protein-protein, protein-DNA and genetic interactions with respect to gene and protein expression data, protein domains, metabolic profiling, root organ culture, genetic transformation and phenotypic screening profiles CONCLUSION: The implementation of latest bioinformatic tools in combination with biotechnological techniques for breeding platforms are important in conservation of medicinal plant species in danger. The current review is based on molecular and in vitro methodologies employed in W. somnifera for accepting their importance in the improvement of this valuable medicinal species.
Collapse
Affiliation(s)
- Niraj Tripathi
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur 482004, India
| | - Divya Shrivastava
- School of Life Sciences, Jaipur National University, Jaipur 302017, India
| | - Bilal Ahmad Mir
- Department of Botany, Satellite Campus Kargil, University of Kashmir, J&K, Srinagar-190006, India
| | - Shailesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Sumit Govil
- School of Life Sciences, Jaipur National University, Jaipur 302017, India
| | - Maryam Vahedi
- Department of Horticultural Science, Faculty of Agricultural Science & Engineering, University of Tehran 3391653755, Iran
| | - Prakash S Bisen
- School of Life Sciences, Jaipur National University, Jaipur 302017, India; School of Studies in Biotechnology, Jiwaji University, Gwalior 474001, India.
| |
Collapse
|
14
|
Agarwal AV, Singh D, Dhar YV, Michael R, Gupta P, Chandra D, Trivedi PK. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in the Medicinal Plant, Withania somnifera. PLANT & CELL PHYSIOLOGY 2018; 59:262-274. [PMID: 29165715 DOI: 10.1093/pcp/pcx179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/13/2017] [Indexed: 05/20/2023]
Abstract
Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.
Collapse
Affiliation(s)
- Aditya Vikram Agarwal
- Council of Scientific and Industrial Research, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Deeksha Singh
- Council of Scientific and Industrial Research, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Yogeshwar Vikram Dhar
- Council of Scientific and Industrial Research, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Rahul Michael
- Council of Scientific and Industrial Research, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Parul Gupta
- Council of Scientific and Industrial Research, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Deepak Chandra
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR) Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| |
Collapse
|
15
|
Pandey V, Ansari WA, Misra P, Atri N. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application. FRONTIERS IN PLANT SCIENCE 2017; 8:1390. [PMID: 28848589 PMCID: PMC5552756 DOI: 10.3389/fpls.2017.01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/26/2017] [Indexed: 05/11/2023]
Abstract
Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number) of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc.) or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race.
Collapse
Affiliation(s)
- Vibha Pandey
- Department of Plant Molecular Biology, University of DelhiNew Delhi, India
| | - Waquar Akhter Ansari
- Department of Botany, Mahila Maha Vidhyalaya (MMV), Banaras Hindu UniversityVaranasi, India
| | - Pratibha Misra
- National Botanical Research Institute, Council of Scientific and Industrial ResearchLucknow, India
- *Correspondence: Pratibha Misra
| | - Neelam Atri
- Department of Botany, Mahila Maha Vidhyalaya (MMV), Banaras Hindu UniversityVaranasi, India
- Neelam Atri
| |
Collapse
|
16
|
RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera. PLoS One 2016; 11:e0149691. [PMID: 26919744 PMCID: PMC4769023 DOI: 10.1371/journal.pone.0149691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022] Open
Abstract
Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.
Collapse
|
17
|
Saema S, Rahman LU, Singh R, Niranjan A, Ahmad IZ, Misra P. Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses. PLANT CELL REPORTS 2016; 35:195-211. [PMID: 26518426 DOI: 10.1007/s00299-015-1879-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/25/2015] [Accepted: 10/05/2015] [Indexed: 05/06/2023]
Abstract
Overexpression of sterol glycosyltransferase (SGTL1) gene of Withania somnifera showing its involvement in glycosylation of withanolide that leads to enhanced growth and tolerance to biotic and abiotic stresses. Withania somnifera is widely used in Ayurvedic medicines for over 3000 years due to its therapeutic properties. It contains a variety of glycosylated steroids called withanosides that possess neuroregenerative, adaptogenic, anticonvulsant, immunomodulatory and antioxidant activities. The WsSGTL1 gene specific for 3β-hydroxy position has a catalytic specificity to glycosylate withanolide and sterols. Glycosylation not only stabilizes the products but also alters their physiological activities and governs intracellular distribution. To understand the functional significance and potential of WsSGTL1 gene, transgenics of W. somnifera were generated using Agrobacterium tumefaciens-mediated transformation. Stable integration and overexpression of WsSGTL1 gene were confirmed by Southern blot analysis followed by quantitative real-time PCR. The WsGTL1 transgenic plants displayed number of alterations at phenotypic and metabolic level in comparison to wild-type plants which include: (1) early and enhanced growth with leaf expansion and increase in number of stomata; (2) increased production of glycowithanolide (majorly withanoside V) and campesterol, stigmasterol and sitosterol in glycosylated forms with reduced accumulation of withanolides (withaferin A, withanolide A and withanone); (3) tolerance towards biotic stress (100 % mortality of Spodoptera litura), improved survival capacity under abiotic stress (cold stress) and; (4) enhanced recovery capacity after cold stress, as indicated by better photosynthesis performance, chlorophyll, anthocyanin content and better quenching regulation of PSI and PSII. Our data demonstrate overexpression of WsSGTL1 gene which is responsible for increase in glycosylated withanolide and sterols, and confers better growth and tolerance to both biotic and abiotic stresses.
Collapse
Affiliation(s)
- Syed Saema
- Tissue Culture and Plant Transformation Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Department of Bioscience, Integral University, Lucknow, India
| | - Laiq Ur Rahman
- Department of Biotechnology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ruchi Singh
- Tissue Culture and Plant Transformation Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Abhishek Niranjan
- Tissue Culture and Plant Transformation Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | | | - Pratibha Misra
- Tissue Culture and Plant Transformation Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
18
|
Dhar N, Razdan S, Rana S, Bhat WW, Vishwakarma R, Lattoo SK. A Decade of Molecular Understanding of Withanolide Biosynthesis and In vitro Studies in Withania somnifera (L.) Dunal: Prospects and Perspectives for Pathway Engineering. FRONTIERS IN PLANT SCIENCE 2015; 6:1031. [PMID: 26640469 PMCID: PMC4661287 DOI: 10.3389/fpls.2015.01031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/06/2015] [Indexed: 05/16/2023]
Abstract
Withania somnifera, a multipurpose medicinal plant is a rich reservoir of pharmaceutically active triterpenoids that are steroidal lactones known as withanolides. Though the plant has been well-characterized in terms of phytochemical profiles as well as pharmaceutical activities, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. This scenario limits biotechnological interventions for enhanced production of bioactive compounds. Nevertheless, recent emergent trends vis-à-vis, the exploration of genomic, transcriptomic, proteomic, metabolomics, and in vitro studies have opened new vistas regarding pathway engineering of withanolide production. During recent years, various strategic pathway genes have been characterized with significant amount of regulatory studies which allude toward development of molecular circuitries for production of key intermediates or end products in heterologous hosts. Another pivotal aspect covering redirection of metabolic flux for channelizing the precursor pool toward enhanced withanolide production has also been attained by deciphering decisive branch point(s) as robust targets for pathway modulation. With these perspectives, the current review provides a detailed overview of various studies undertaken by the authors and collated literature related to molecular and in vitro approaches employed in W. somnifera for understanding various molecular network interactions in entirety.
Collapse
Affiliation(s)
- Niha Dhar
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Sumeer Razdan
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Satiander Rana
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Wajid W Bhat
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Ram Vishwakarma
- Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Surrinder K Lattoo
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| |
Collapse
|
19
|
Singh P, Guleri R, Singh V, Kaur G, Kataria H, Singh B, Kaur G, Kaul SC, Wadhwa R, Pati PK. Biotechnological interventions inWithania somnifera(L.) Dunal. Biotechnol Genet Eng Rev 2015; 31:1-20. [DOI: 10.1080/02648725.2015.1020467] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Senthil K, Jayakodi M, Thirugnanasambantham P, Lee SC, Duraisamy P, Purushotham PM, Rajasekaran K, Nancy Charles S, Mariam Roy I, Nagappan AK, Kim GS, Lee YS, Natesan S, Min TS, Yang TJ. Transcriptome analysis reveals in vitro cultured Withania somnifera leaf and root tissues as a promising source for targeted withanolide biosynthesis. BMC Genomics 2015; 16:14. [PMID: 25608483 PMCID: PMC4310147 DOI: 10.1186/s12864-015-1214-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/02/2015] [Indexed: 12/19/2022] Open
Abstract
Background The production of metabolites via in vitro culture is promoted by the availability of fully defined metabolic pathways. Withanolides, the major bioactive phytochemicals of Withania somnifera, have been well studied for their pharmacological activities. However, only a few attempts have been made to identify key candidate genes involved in withanolide biosynthesis. Understanding the steps involved in withanolide biosynthesis is essential for metabolic engineering of this plant to increase withanolide production. Results Transcriptome sequencing was performed on in vitro adventitious root and leaf tissues using the Illumina platform. We obtained a total of 177,156 assembled transcripts with an average unigene length of 1,033 bp. About 13% of the transcripts were unique to in vitro adventitious roots but no unique transcripts were observed in in vitro-grown leaves. A putative withanolide biosynthetic pathway was deduced by mapping the assembled transcripts to the KEGG database, and the expression of candidate withanolide biosynthesis genes -were validated by qRT PCR. The accumulation pattern of withaferin A and withanolide A varied according to the type of tissue and the culture period. Further, we demonstrated that in vitro leaf extracts exhibit anticancer activity against human gastric adenocarcinoma cell lines at sub G1 phase. Conclusions We report here a validated large-scale transcriptome data set and the potential biological activity of in vitro cultures of W. somnifera. This study provides important information to enhance tissue-specific expression and accumulation of secondary metabolites, paving the way for industrialization of in vitro cultures of W. somnifera. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1214-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalaiselvi Senthil
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Pankajavalli Thirugnanasambantham
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Sang Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Pradeepa Duraisamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Preethi M Purushotham
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Kalaiselvi Rajasekaran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Shobana Nancy Charles
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Irene Mariam Roy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Arul Kumar Nagappan
- Lab of Biochemistry, School of Veterinary Medicine, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea.
| | - Gon Sup Kim
- Lab of Biochemistry, School of Veterinary Medicine, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea.
| | - Yun Sun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Senthil Natesan
- Genomics and Proteomics Laboratory, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
| | - Tae-Sun Min
- National Research Foundation, Seoul, Republic of Korea.
| | - Tae Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| |
Collapse
|
21
|
Rana S, Bhat WW, Dhar N, Pandith SA, Razdan S, Vishwakarma R, Lattoo SK. Molecular characterization of two A-type P450s, WsCYP98A and WsCYP76A from Withania somnifera (L.) Dunal: expression analysis and withanolide accumulation in response to exogenous elicitations. BMC Biotechnol 2014; 14:89. [PMID: 25416924 PMCID: PMC4247701 DOI: 10.1186/s12896-014-0089-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/06/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pharmacological investigations position withanolides as important bioactive molecules demanding their enhanced production. Therefore, one of the pivotal aims has been to gain knowledge about complete biosynthesis of withanolides in terms of enzymatic and regulatory genes of the pathway. However, the pathway remains elusive at the molecular level. P450s monooxygenases play a crucial role in secondary metabolism and predominantly help in functionalizing molecule core structures including withanolides. RESULTS In an endeavor towards identification and characterization of different P450s, we here describe molecular cloning, characterization and expression analysis of two A-type P450s, WsCYP98A and WsCYP76A from Withania somnifera. Full length cDNAs of WsCYP98A and WsCYP76A have open reading frames of 1536 and 1545 bp encoding 511 (58.0 kDa) and 515 (58.7 kDa) amino acid residues, respectively. Entire coding sequences of WsCYP98A and WsCYP76A cDNAs were expressed in Escherichia coli BL21 (DE3) using pGEX4T-2 expression vector. Quantitative real-time PCR analysis indicated that both genes express widely in leaves, stalks, roots, flowers and berries with higher expression levels of WsCYP98A in stalks while WsCYP76A transcript levels were more obvious in roots. Further, transcript profiling after methyl jasmonate, salicylic acid, and gibberellic acid elicitations displayed differential transcriptional regulation of WsCYP98A and WsCYP76A. Copious transcript levels of both P450s correlated positively with the higher production of withanolides. CONCLUSIONS Two A-types P450 WsCYP98A and WsCYP76A were isolated, sequenced and heterologously expressed in E. coli. Both P450s are spatially regulated at transcript level showing differential tissue specificity. Exogenous elicitors acted as both positive and negative regulators of mRNA transcripts. Methyl jasmonate and salicylic acid resulted in copious expression of WsCYP98A and WsCYP76A. Enhanced mRNA levels also corroborated well with the increased accumulation of withanolides in response to elicitations. The empirical findings suggest that elicitors possibly incite defence or stress responses of the plant by triggering higher accumulation of withanolides.
Collapse
Affiliation(s)
- Satiander Rana
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Wajid Waheed Bhat
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Niha Dhar
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Shahzad A Pandith
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Sumeer Razdan
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Ram Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Tawi-180001, India.
| |
Collapse
|