1
|
Mares-García AS, Ortiz Magdaleno M, Gordillo-Moscoso A, Cárdenas-Galindo MG, Ávila Hernández IN, Escobar-García DM, Márquez-Lucero A, Pozos-Guillén A. Morphological and biological properties of silica nanoparticles for CRTC3-siRNA delivery and downregulation of the RGS2 expression in preadipocytes. J Biomater Appl 2021; 36:626-637. [PMID: 33947275 DOI: 10.1177/08853282211014723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to characterize the morphological properties of amorphous silica nanoparticles (SiO2 NPs), their cytotoxicity and intracellular location within Human Osteoblasts (HOB). Additionally, SiO2 NPs were explored for their effectivity as carriers of CRTC3-siRNA on Human Preadipocytes (HPAd), and thus downregulate RGS2 gene expression. SiO2 NPs were synthesized using the method of Stöber at 45 °C, 56 °C, and 62 °C. These were characterized via TEM with EDS, Zeta Potential and FT-IR. Cytotoxicity was evaluated by XTT at three concentrations 50, 100 and 500 µg/mL; SiO2 NPs intracellular localization was observed through Confocal Laser Scanning Microscope. Delivering siRNA effectivity was measured by RT-qPCR. Morphology of SiO2 NPs was spherical with a range size from 64 to 119 nm; their surface charge was negative. Confocal images demonstrated that SiO2 NPs were located within cellular cytoplasm. At a SiO2 NPs concentration of 500 µg/mL HOB viability decreased, while at 50 µg/mL and 100 µg/mL cell viability was not affected regardless SiO2 NPs size. SiO2 NPs-CRTC3-siRNA are effective to down-regulate RGS2 gene expression in HPAd without cytotoxic effects. The developed SiO2 NPs-CRTC3-siRNA are a promising tool as a delivery vehicle to control obesity.
Collapse
Affiliation(s)
- América Susana Mares-García
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, , Universidad Autonoma de San Luis Potosi, San Luis, SLP, Mexico
| | - Marine Ortiz Magdaleno
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, , Universidad Autonoma de San Luis Potosi, San Luis, SLP, Mexico
| | - Antonio Gordillo-Moscoso
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, , Universidad Autonoma de San Luis Potosi, San Luis, SLP, Mexico
| | | | - Ilse Nayeli Ávila Hernández
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, , Universidad Autonoma de San Luis Potosi, San Luis, SLP, Mexico
| | - Diana María Escobar-García
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, , Universidad Autonoma de San Luis Potosi, San Luis, SLP, Mexico
| | - Alfredo Márquez-Lucero
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, , Universidad Autonoma de San Luis Potosi, San Luis, SLP, Mexico
| | - Amaury Pozos-Guillén
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, , Universidad Autonoma de San Luis Potosi, San Luis, SLP, Mexico
| |
Collapse
|
2
|
Liu J, Li J, Chen W, Xie X, Chu X, Valencak TG, Wang Y, Shan T. Comprehensive evaluation of the metabolic effects of porcine CRTC3 overexpression on subcutaneous adipocytes with metabolomic and transcriptomic analyses. J Anim Sci Biotechnol 2021; 12:19. [PMID: 33653408 PMCID: PMC7927250 DOI: 10.1186/s40104-021-00546-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Meat quality is largely driven by fat deposition, which is regulated by several genes and signaling pathways. The cyclic adenosine monophosphate (cAMP) -regulated transcriptional coactivator 3 (CRTC3) is a coactivator of cAMP response element binding protein (CREB) that mediates the function of protein kinase A (PKA) signaling pathway and is involved in various biological processes including lipid and energy metabolism. However, the effects of CRTC3 on the metabolome and transcriptome of porcine subcutaneous adipocytes have not been studied yet. Here, we tested whether porcine CRTC3 expression would be related to fat deposition in Heigai pigs (a local fatty breed in China) and Duroc×Landrace×Yorkshire (DLY, a lean breed) pigs in vivo. The effects of adenovirus-induced CRTC3 overexpression on the metabolomic and transcriptomic profiles of subcutaneous adipocytes were also determined in vitro by performing mass spectrometry-based metabolomics combined with RNA sequencing (RNA-seq). RESULTS Porcine CRTC3 expression is associated with fat deposition in vivo. In addition, CRTC3 overexpression increased lipid accumulation and the expression of mature adipocyte-related genes in cultured porcine subcutaneous adipocytes. According to the metabolomic analysis, CRTC3 overexpression induced significant changes in adipocyte lipid, amino acid and nucleotide metabolites in vitro. The RNA-seq analysis suggested that CRTC3 overexpression alters the expression of genes and pathways involved in adipogenesis, fatty acid metabolism and glycerophospholipid metabolism in vitro. CONCLUSIONS We identified significant alterations in the metabolite composition and the expression of genes and pathways involved in lipid metabolism in CRTC3-overexpressing adipocytes. Our results suggest that CRTC3 might play an important regulatory role in lipid metabolism and thus affects lipid accumulation in porcine subcutaneous adipocytes.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Xintao Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xingang Chu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| |
Collapse
|
3
|
Zhang Q, Cai Z, Lhomme M, Sahana G, Lesnik P, Guerin M, Fredholm M, Karlskov-Mortensen P. Inclusion of endophenotypes in a standard GWAS facilitate a detailed mechanistic understanding of genetic elements that control blood lipid levels. Sci Rep 2020; 10:18434. [PMID: 33116219 PMCID: PMC7595098 DOI: 10.1038/s41598-020-75612-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Dyslipidemia is the primary cause of cardiovascular disease, which is a serious human health problem in large parts of the world. Therefore, it is important to understand the genetic and molecular mechanisms that regulate blood levels of cholesterol and other lipids. Discovery of genetic elements in the regulatory machinery is often based on genome wide associations studies (GWAS) focused on end-point phenotypes such as total cholesterol level or a disease diagnosis. In the present study, we add endophenotypes, such as serum levels of intermediate metabolites in the cholesterol synthesis pathways, to a GWAS analysis and use the pig as an animal model. We do this to increase statistical power and to facilitate biological interpretation of results. Although the study population was limited to ~ 300 individuals, we identify two genome-wide significant associations and ten suggestive associations. Furthermore, we identify 28 tentative associations to loci previously associated with blood lipids or dyslipidemia associated diseases. The associations with endophenotypes may inspire future studies that can dissect the biological mechanisms underlying these previously identified associations and add a new level of understanding to previously identified associations.
Collapse
Affiliation(s)
- Qianqian Zhang
- Bioinformatics Research Centre (BiRC), Aarhus University, C.F.Møllers Allé 8, 8000, Aarhus C, Denmark
| | - Zexi Cai
- Center for Quantitativ Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Danmark
| | - Marie Lhomme
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), 47-83 boulevard de l'hôpital, 75013, Paris, France
| | - Goutam Sahana
- Center for Quantitativ Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Danmark
| | - Philippe Lesnik
- Unité de Recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, INSERM UMR_S 1166, ICAN Institute of Cardiometabolism & Nutrition, Faculté de Médecine Sorbonne Université, Sorbonne Université, 4ème étage, Bureau 421,91, boulevard de l'Hôpital, 75634, Paris Cedex 13, France
| | - Maryse Guerin
- Unité de Recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, INSERM UMR_S 1166, ICAN Institute of Cardiometabolism & Nutrition, Faculté de Médecine Sorbonne Université, Sorbonne Université, 4ème étage, Bureau 421,91, boulevard de l'Hôpital, 75634, Paris Cedex 13, France
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Gronnegaardsvej 3, 1870, Frederikgsberg C, Denmark
| | - Peter Karlskov-Mortensen
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Gronnegaardsvej 3, 1870, Frederikgsberg C, Denmark.
| |
Collapse
|
4
|
Liu J, Nong Q, Wang J, Chen W, Xu Z, You W, Xie J, Wang Y, Shan T. Breed difference and regulatory role of CRTC3 in porcine intramuscular adipocyte. Anim Genet 2020; 51:521-530. [PMID: 32400010 DOI: 10.1111/age.12945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
The cAMP responsive element binding protein (CREB)-regulated transcription coactivator 3 (CRTC3) is a member of the CRTC protein family and plays an important role in energy metabolism. The aim of this study was to determine if the expression of porcine CRTC3 is related to intramuscular fat (IMF) deposition and meat quality in Heigai pigs (a local fatty breed in China) and Duroc × Landrace × Yorkshire (DLY) pigs (a lean crossbred pig widely cultured in China). In addition, the effect of ectopic expression of CRTC3 on gene expression in porcine IMF adipocytes was also examined. Our results showed that Heigai pigs had lower lean percentage, thicker back fat thickness and smaller loin muscle area than DLY pigs. Compared with DLY pigs, Heigai pigs had higher marbling scores, better meat color and higher IMF contents and triglyceride concentrations. Higher levels of oxidative metabolic enzyme and expression of the slow oxidative muscle fiber-related genes were observed in longissimus dorsi muscle and psoas major muscle (P < 0.05) from Heigai pigs. Notably, CRTC3 and adipocyte-specific marker genes were highly expressed in muscle tissues of Heigai pigs. The expression of lipolysis-related genes ATGL and HSL were lower in Heigai muscles. Moreover, forced expression of CRTC3 promoted lipid accumulation and increased the expression of PPARγ, C/EBPα, leptin and FABP4 (P < 0.05), whereas it decreased the expression of ATGL and HSL in IMF adipocytes. These results suggest that CRTC3 expression is associated with lipid accumulation and IMF deposition in pigs.
Collapse
Affiliation(s)
- J Liu
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Q Nong
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - J Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - W Chen
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Z Xu
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - W You
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - J Xie
- Shandong Chunteng Food Co. Ltd, Zaozhuang, Shandong, 277500, China
| | - Y Wang
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - T Shan
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
5
|
Wu S, Ning Y, Raza SHA, Zhang C, Zhang L, Cheng G, Wang H, Schreurs N, Zan L. Genetic variants and haplotype combination in the bovine CRTC3 affected conformation traits in two Chinese native cattle breeds (Bos Taurus). Genomics 2018; 111:1736-1744. [PMID: 30529539 DOI: 10.1016/j.ygeno.2018.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/12/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
CREB-regulated transcription coactivator 3 (CRTC3) plays an extensive role in glucose and lipid metabolism. This study investigated the genetic variation and haplotype combination in CRTC3 and verified their contribution to bovine growth traits. Firstly, investigated the mRNA expression of CRTC3 in adult Qinchuan cattle and evaluated the effects that genetic variation of CRTC3 had on conformation and carcass traits in two Chinese cattle breeds (Qinchuan and Jiaxian). Four SNPs (single nucleotide polymorphisms) were identified including two in introns (SNP1: g.62652 A > G and SNP4: g.91297C > T) and two in exons (SNP2 g.62730C > T and SNP3: g.66478G > C). The association and haplotype combination results showed that there was an association with some growth and carcass traits(P < 0.05). Individuals with haplotype combination H1H1 (-AACCCCTT-) were associated with a conformation of a larger framed animal and an animal that produced a larger loin area. Variations in the CRTC3 genes and the haplotype combination H1H1 may be considered as molecular markers for carcass traits that are associated with more lean meat yield for use in cattle breeding programs in China.
Collapse
Affiliation(s)
- Sen Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, PR China
| | - Yue Ning
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chengtu Zhang
- Animal Husbandry and Veterinary Station in Xining City, Xining, Qinghai 810003, PR China
| | - Le Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center of Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center of Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Nicola Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center of Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
6
|
Rotter D, Peiris H, Grinsfelder DB, Martin AM, Burchfield J, Parra V, Hull C, Morales CR, Jessup CF, Matusica D, Parks BW, Lusis AJ, Nguyen NUN, Oh M, Iyoke I, Jakkampudi T, McMillan DR, Sadek HA, Watt MJ, Gupta RK, Pritchard MA, Keating DJ, Rothermel BA. Regulator of Calcineurin 1 helps coordinate whole-body metabolism and thermogenesis. EMBO Rep 2018; 19:embr.201744706. [PMID: 30389725 DOI: 10.15252/embr.201744706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.
Collapse
Affiliation(s)
- David Rotter
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heshan Peiris
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D Bennett Grinsfelder
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jana Burchfield
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valentina Parra
- Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS) and Center for Exercise Metabolism and Cancer (CEMC), University of Chile, Santiago, Chile
| | - Christi Hull
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cyndi R Morales
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ngoc Uyen Nhi Nguyen
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misook Oh
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Chemistry, Pohang University of Science and Technology, Pohang, South Korea
| | - Israel Iyoke
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanvi Jakkampudi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Randy McMillan
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Medical Centre, Dallas, TX, USA
| | - Hesham A Sadek
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew J Watt
- The Department of Physiology and Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Monash University, Clayton, Vic., Australia
| | - Rana K Gupta
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Vic., Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia .,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Beverly A Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
7
|
Taub M. Gene Level Regulation of Na,K-ATPase in the Renal Proximal Tubule Is Controlled by Two Independent but Interacting Regulatory Mechanisms Involving Salt Inducible Kinase 1 and CREB-Regulated Transcriptional Coactivators. Int J Mol Sci 2018; 19:E2086. [PMID: 30021947 PMCID: PMC6073390 DOI: 10.3390/ijms19072086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
For many years, studies concerning the regulation of Na,K-ATPase were restricted to acute regulatory mechanisms, which affected the phosphorylation of Na,K-ATPase, and thus its retention on the plasma membrane. However, in recent years, this focus has changed. Na,K-ATPase has been established as a signal transducer, which becomes part of a signaling complex as a consequence of ouabain binding. Na,K-ATPase within this signaling complex is localized in caveolae, where Na,K-ATPase has also been observed to regulate Inositol 1,4,5-Trisphosphate Receptor (IP3R)-mediated calcium release. This latter association has been implicated as playing a role in signaling by G Protein Coupled Receptors (GPCRs). Here, the consequences of signaling by renal effectors that act via such GPCRs are reviewed, including their regulatory effects on Na,K-ATPase gene expression in the renal proximal tubule (RPT). Two major types of gene regulation entail signaling by Salt Inducible Kinase 1 (SIK1). On one hand, SIK1 acts so as to block signaling via cAMP Response Element (CRE) Binding Protein (CREB) Regulated Transcriptional Coactivators (CRTCs) and on the other hand, SIK1 acts so as to stimulate signaling via the Myocyte Enhancer Factor 2 (MEF2)/nuclear factor of activated T cell (NFAT) regulated genes. Ultimate consequences of these pathways include regulatory effects which alter the rate of transcription of the Na,K-ATPase β1 subunit gene atp1b1 by CREB, as well as by MEF2/NFAT.
Collapse
Affiliation(s)
- Mary Taub
- Biochemistry Dept., Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Suite 4902, Buffalo, NY 14203, USA.
| |
Collapse
|
8
|
Zhu L, Wang Y, Jiang J, Zhou R, Ye J. Cyclic adenosine monophosphate-regulated transcriptional co-activator 3 polymorphism in Chinese patients with acute coronary syndrome. Medicine (Baltimore) 2018; 97:e11382. [PMID: 29979427 PMCID: PMC6076152 DOI: 10.1097/md.0000000000011382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To investigate the cAMP-regulated transcriptional co-activator 3 (CRTC3) polymorphism and its significance in the acute coronary syndrome patients.In total, 248 patients with acute coronary syndrome admitted to Taizhou People's Hospital between March 2016 and October 2016 were included in this study. Eighty-eight age- and gender-matched healthy individuals received physical examination in our hospital served as normal control. Single nucleotide polymorphism (SNP) analysis of CRTC3 (rs3862434 and rs11635252) was evaluated using PCR amplification.For the SNP of CRTC3, significant differences were identified in rs3862434 (AA/AG) and rs11635252 (TT/CT/CC) between the 2 groups (P < .05). Statistical increase was noticed in the high density lipoprotein cholesterol (HDL-C) in those with AG phenotype compared with those with AA phenotype in those with rs3862434. Significant decrease was identified in the total cholesterol (TC), triglyceride (TG), and weight in those with CC phenotype compared with those with CT phenotype among the cases with rs11635252 (P < .05).CRTC3 polymorphism was associated with the onset of acute coronary syndrome in Han Chinese patients, which may be related to the imbalance of the lipid metabolism.
Collapse
Affiliation(s)
- Li Zhu
- Department of Laboratory Medicine, Taizhou People's Hospital
| | - Yahui Wang
- Department of Laboratory Medicine, Taizhou People's Hospital
| | - Jun Jiang
- Taizhou Polytechnic College, Taizhou, China
| | | | - Jun Ye
- Department of Laboratory Medicine, Taizhou People's Hospital
| |
Collapse
|
9
|
Kim YH, Yoo H, Hong AR, Kwon M, Kang SW, Kim K, Song Y. NEDD4L limits cAMP signaling through ubiquitination of CREB-regulated transcription coactivator 3. FASEB J 2018; 32:4053-4062. [PMID: 29505301 DOI: 10.1096/fj.201701406r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transcription factor cAMP-responsive element-binding protein (CREB) is involved in a variety of physiologic processes. Although its activity appears to be largely correlated with its phosphorylation status, cAMP-mediated dephosphorylation and the subsequent nuclear migration of the CREB-regulated transcription factors (CRTCs) are required to stimulate CREB transcriptional activity. Among the 3 identified mammalian homologs of CRTCs, CRTC3 has been shown to be expressed predominantly in adipose tissues in response to catecholamine signals that regulate lipid metabolism. Here, we show that prolonged cAMP signaling down-regulates CRTC3 in a proteasome-dependent manner and that neural precursor cell-expressed developmentally down-regulated gene 4-like (NEDD4L), a specific ubiquitin ligase for CRTC3, is responsible for this process. By recognizing the PY motif of CRTC3, NEDD4L interacts with CRTC3 and promotes its polyubiquitination. Interaction between NEDD4L and CRTC3 is further boosted by cAMP signaling, and this enhanced interaction appears to be dependent on the cAMP-mediated phosphorylation of NEDD4L at the Ser448 site. Furthermore, we show that food withdrawal stimulates NEDD4L phosphorylation in mice, which then show a decrease of adipose tissue CRTC3 protein levels. Together, these results suggest that NEDD4L plays a key role in the feedback regulation of cAMP signaling by limiting CRTC3 protein levels.-Kim, Y.-H., Yoo, H., Hong, A.-R., Kwon, M., Kang, S.-W., Kim, K., Song, Y. NEDD4L limits cAMP signaling through ubiquitination of CREB-regulated transcription coactivator 3.
Collapse
Affiliation(s)
- Yo-Han Kim
- Department of Biomedical Sciences, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hanju Yoo
- Department of Biomedical Sciences, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - A-Reum Hong
- Department of Biomedical Sciences, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minseo Kwon
- Department of Biomedical Sciences, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Convergence Medicine Research Center/Biomedical Research Center, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Youngsup Song
- Department of Biomedical Sciences, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Lee S, Hur M, Lee E, Hong K, Kim J. Genomic characterization of the porcine CRTC3 and the effects of a non-synonymous mutation p.V515F on lean meat production and belly fat. Meat Sci 2018; 137:211-215. [DOI: 10.1016/j.meatsci.2017.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/13/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
|
11
|
Escoubas CC, Silva-García CG, Mair WB. Deregulation of CRTCs in Aging and Age-Related Disease Risk. Trends Genet 2017; 33:303-321. [PMID: 28365140 DOI: 10.1016/j.tig.2017.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
Advances in public health in the past century have seen a sharp increase in human life expectancy. With these changes have come an increased prevalence of age-related pathologies and health burdens in the elderly. Patient age is the biggest risk factor for multiple chronic conditions that often occur simultaneously within a single individual. An alternative to disease-centric therapeutic approaches is that of 'geroscience', which aims to define molecular mechanisms that link age to overall disease risk. One such mechanism is deregulation of CREB-regulated transcriptional coactivators (CRTCs). Initially identified for their role in modulating CREB transcription, the past 5 years has seen an expansion in knowledge of new cellular regulators and roles of CRTCs beyond CREB. CRTCs have been shown to modulate organismal aging in Caenorhabditis elegans and to impact on age-related diseases in humans. We discuss CRTC deregulation as a new driver of aging that integrates the link between age and disease risk.
Collapse
Affiliation(s)
- Caroline C Escoubas
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Carlos G Silva-García
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Stachowiak M, Szczerbal I, Switonski M. Genetics of Adiposity in Large Animal Models for Human Obesity-Studies on Pigs and Dogs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:233-70. [PMID: 27288831 DOI: 10.1016/bs.pmbts.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of domestic mammals in the development of human biomedical sciences has been widely documented. Among these model species the pig and dog are of special importance. Both are useful for studies on the etiology of human obesity. Genome sequences of both species are known and advanced genetic tools [eg, microarray SNP for genome wide association studies (GWAS), next generation sequencing (NGS), etc.] are commonly used in such studies. In the domestic pig the accumulation of adipose tissue is an important trait, which influences meat quality and fattening efficiency. Numerous quantitative trait loci (QTLs) for pig fatness traits were identified, while gene polymorphisms associated with these traits were also described. The situation is different in dog population. Generally, excessive accumulation of adipose tissue is considered, similar to humans, as a complex disease. However, research on the genetic background of canine obesity is still in its infancy. Between-breed differences in terms of adipose tissue accumulation are well known in both animal species. In this review we show recent advances of studies on adipose tissue accumulation in pigs and dogs, and their potential importance for studies on human obesity.
Collapse
Affiliation(s)
- M Stachowiak
- Department of Genetics, Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - I Szczerbal
- Department of Genetics, Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - M Switonski
- Department of Genetics, Animal Breeding, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
13
|
Prats-Puig A, Soriano-Rodríguez P, Oliveras G, Carreras-Badosa G, Espuña S, Díaz-Roldán F, de Zegher F, Ibáñez L, Bassols J, Puig T, López-Bermejo A. Soluble CRTC3: A Newly Identified Protein Released by Adipose Tissue That Is Associated with Childhood Obesity. Clin Chem 2016; 62:476-84. [DOI: 10.1373/clinchem.2015.249136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/29/2015] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
CREB-regulated transcription coactivator 3 (CRTC3) is found in adipocytes, where it may promote obesity through disruption of catecholamine signaling. We wished to assess whether CRTC3 is a soluble protein secreted by adipose tissue, explore whether CRTC3 is detectable and quantifiable in the circulation, and ascertain whether CRTC3 serum concentrations are related to metabolic markers in children.
METHODS
Explants of adipose tissue from 12 children were cultured to study adipocyte cell size and the secretion of CRTC3 (immunoblot and ELISA). We also performed a cross-sectional and longitudinal study in 211 asymptomatic prepubertal white children at age 7 years, 115 of whom were followed up at age approximately 10 years. We measured circulating concentrations of CRTC3 and studied associations between serum CRTC3 and metabolic markers.
RESULTS
Measurable concentrations of CRTC3 were found in conditioned media of adipose tissue explants and in serum samples. CRTC3 concentrations in visceral adipose tissue were negatively associated with adipocyte cell size and positively related to adipocyte cell number (P < 0.05). In the cross-sectional study, higher CRTC3 concentrations were associated with higher body mass index (P = 0.001), waist circumference (P = 0.003), and systolic blood pressure (P = 0.007) and lower high molecular weight adiponectin (P = 0.003). In the longitudinal study, serum concentrations of CRTC3 at age approximately 7 years were associated with changes in waist circumference (β = 0.254; P = 0.004; r = 0.145) and high molecular weight adiponectin (β=-0.271; P = 0.014; r = 0.101), respectively, at age approximately 10 years.
CONCLUSIONS
CRTC3, a newly identified protein that is related to childhood obesity, is present in the circulation, partly as a result of adipose tissue secretion. Higher serum CRTC3 concentrations are related to and predict a poorer metabolic profile in children.
Collapse
Affiliation(s)
- Anna Prats-Puig
- Pediatrics Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain
- Department of Physical Therapy, EUSES University School, University of Girona, Girona, Spain
| | | | - Glòria Oliveras
- New Therapeutic Targets Lab (TargetsLab), Unit of Oncology, University of Girona, Girona, Spain
- Department of Pathology and Anatomical Sciences, Dr. Josep Trueta Hospital, Girona, Spain
| | - Gemma Carreras-Badosa
- Pediatrics Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain
| | - Sílvia Espuña
- Pediatrics, Salut Empordà Foundation, Figueres, Spain
| | - Ferran Díaz-Roldán
- Pediatrics Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain
| | - Francis de Zegher
- Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Lourdes Ibáñez
- Pediatric Endocrinology, Sant Joan de Déu Children's Hospital, Esplugues, Barcelona
- CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), Instituto de Salud Carlos III, Madrid, Spain
| | - Judit Bassols
- Pediatrics Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain
| | - Teresa Puig
- New Therapeutic Targets Lab (TargetsLab), Unit of Oncology, University of Girona, Girona, Spain
| | - Abel López-Bermejo
- Pediatrics Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain
- TransLab Research Group, Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| |
Collapse
|