1
|
Walter B, Hirsch S, Kuhlburger L, Stahl A, Schnabel L, Wisser S, Haeusser LA, Tsiami F, Plöger S, Aghaallaei N, Dick AM, Skokowa J, Schmees C, Templin M, Schenke-Layland K, Tatagiba M, Nahnsen S, Merk DJ, Tabatabai G. Functionally-instructed modifiers of response to ATR inhibition in experimental glioma. J Exp Clin Cancer Res 2024; 43:77. [PMID: 38475864 DOI: 10.1186/s13046-024-02995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The DNA damage response (DDR) is a physiological network preventing malignant transformation, e.g. by halting cell cycle progression upon DNA damage detection and promoting DNA repair. Glioblastoma are incurable primary tumors of the nervous system and DDR dysregulation contributes to acquired treatment resistance. Therefore, DDR targeting is a promising therapeutic anti-glioma strategy. Here, we investigated Ataxia telangiectasia and Rad3 related (ATR) inhibition (ATRi) and functionally-instructed combination therapies involving ATRi in experimental glioma. METHODS We used acute cytotoxicity to identify treatment efficacy as well as RNAseq and DigiWest protein profiling to characterize ATRi-induced modulations within the molecular network in glioma cells. Genome-wide CRISPR/Cas9 functional genomic screens and subsequent validation with functionally-instructed compounds and selected shRNA-based silencing were employed to discover and investigate molecular targets modifying response to ATRi in glioma cell lines in vitro, in primary cultures ex vivo and in zebrafish and murine models in vivo. RESULTS ATRi monotherapy displays anti-glioma efficacy in vitro and ex vivo and modulates the molecular network. We discovered molecular targets by genome-wide CRISPR/Cas9 loss-of-function and activation screens that enhance therapeutic ATRi effects. We validated selected druggable targets by a customized drug library and functional assays in vitro, ex vivo and in vivo. CONCLUSION In conclusion, our study leads to the identification of novel combination therapies involving ATRi that could inform future preclinical studies and early phase clinical trials.
Collapse
Affiliation(s)
- Bianca Walter
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sophie Hirsch
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Laurence Kuhlburger
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Quantitative Biology Center, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Leonard Schnabel
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Silas Wisser
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Lara A Haeusser
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Foteini Tsiami
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sarah Plöger
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, Department of Internal Medicine II, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Advaita M Dick
- Division of Translational Oncology, Department of Internal Medicine II, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Julia Skokowa
- Division of Translational Oncology, Department of Internal Medicine II, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Christian Schmees
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Katja Schenke-Layland
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Marcos Tatagiba
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Quantitative Biology Center, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Daniel J Merk
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, 72076, Tübingen, Germany.
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Natu A, Verma T, Khade B, Thorat R, Gera P, Dhara S, Gupta S. Histone acetylation: a key determinant of acquired cisplatin resistance in cancer. Clin Epigenetics 2024; 16:8. [PMID: 38172984 PMCID: PMC10765630 DOI: 10.1186/s13148-023-01615-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cisplatin is an alkylating class of chemotherapeutic drugs used to treat cancer patients. However, cisplatin fails in long-term treatment, and drug resistance is the primary reason for tumor recurrence. Hence, understanding the mechanism of acquirement of chemoresistance is essential for developing novel combination therapeutic approaches. In this study, in vitro cisplatin-resistant cancer cell line models were developed. Gene ontology and GSEA of differentially expressed genes between parental and resistant cells suggest that PI3K-AKT signaling, central carbon metabolism, and epigenetic-associated phenomenon alter in cisplatin-resistant cells. Further, the data showed that increased glucose transport, alteration in the activity of histone-modifying enzymes, and acetyl-CoA levels in resistant cells paralleled an increase in global histone acetylation. Enrichment of histone acetylation on effectors of PI3K-AKT and glycolysis pathway provides evidence of epigenetic regulation of the key molecules in drug resistance. Moreover, cisplatin treatment to resistant cells showed no significant changes in histone acetylation marks since drug treatment alters cell epigenome. In continuation, targeting PI3K-AKT signaling and glycolysis leads to alteration in histone acetylation levels and re-sensitization of resistant cells to chemo-drug. The data provide evidence of histone acetylation's importance in regulating pathways and cisplatin-resistant cells' cell survival. Our study paves the way for new approaches for developing personalized therapies in affecting metabolic pathways and epigenetic changes to achieve better outcomes for targeting drug-resistant cells.
Collapse
Affiliation(s)
- Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400094, India
| | - Tripti Verma
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400094, India
| | - Bharat Khade
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Poonam Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Sangita Dhara
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400094, India
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, 400094, India.
| |
Collapse
|
3
|
Wang Y, Sakaguchi M, Sabit H, Tamai S, Ichinose T, Tanaka S, Kinoshita M, Uchida Y, Ohtsuki S, Nakada M. COL1A2 inhibition suppresses glioblastoma cell proliferation and invasion. J Neurosurg 2023; 138:639-648. [PMID: 35932265 DOI: 10.3171/2022.6.jns22319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE An extracellular matrix such as collagen is an essential component of the tumor microenvironment. Collagen alpha-2(I) chain (COL1A2) is a chain of type I collagen whose triple helix comprises two alpha-1 chains and one alpha-2 chain. The authors' proteomics data showed that COL1A2 is significantly higher in the blood of patients with glioblastoma (GBM) compared with healthy controls. COL1A2 has many different functions in various types of cancers. However, the functions of COL1A2 in GBM are poorly understood. In this study, the authors analyzed the functions of COL1A2 and its signaling pathways in GBM. METHODS Surgical specimens and GBM cell lines (T98, U87, and U251) were used. The expression level of COL1A2 was examined using GBM tissues and normal brain tissues by quantitative real-time polymerase chain reaction. The clinical significance of these levels was evaluated using Kaplan-Meier analysis. Small interfering RNA (siRNA) and small hairpin RNA of COL1A2 were transfected into GBM cell lines to investigate the function of COL1A2 in vitro and in vivo. Flow cytometry was introduced to analyze the alteration of cell cycles. Western blot and immunohistochemistry were performed to analyze the underlying mechanisms. RESULTS The expression level of COL1A2 was upregulated in GBM compared with normal brain tissues. A higher expression of COL1A2 was correlated with poor progression-free survival and overall survival. COL1A2 inhibition significantly suppressed cell proliferation in vitro and in vivo, likely due to G1 arrest. The invasion ability was notably deteriorated by inhibiting COL1A2. Cyclin D1, cyclin-dependent kinase 1, and cyclin-dependent kinase 4, which are involved in the cell cycle, were all downregulated after blockade of COL1A2 in vitro and in vivo. Phosphoinositide 3-kinase inhibitor reduced the expression of COL1A2. Although downregulation of COL1A2 decreased the protein kinase B (Akt) phosphorylation, Akt activator can phosphorylate Akt in siRNA-treated cells. This finding suggests that Akt phosphorylation is partially dependent on COL1A2. CONCLUSIONS COL1A2 plays an important role in driving GBM progression. COL1A2 inhibition attenuated GBM proliferation by promoting cell cycle arrest, indicating that COL1A2 could be a promising therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yi Wang
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Maki Sakaguchi
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa.,2Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa
| | - Hemragul Sabit
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Sho Tamai
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Toshiya Ichinose
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Shingo Tanaka
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Masashi Kinoshita
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| | - Yasuo Uchida
- 3Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai; and
| | - Sumio Ohtsuki
- 4Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsutoshi Nakada
- 1Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa
| |
Collapse
|
4
|
Godoy PRDV, Donaires FS, Montaldi APL, Sakamoto-Hojo ET. Anti-Proliferative Effects of E2F1 Suppression in Glioblastoma Cells. Cytogenet Genome Res 2021; 161:372-381. [PMID: 34482308 DOI: 10.1159/000516997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor; surgery, radiation, and temozolomide still remain the main treatments. There is evidence that E2F1 is overexpressed in various types of cancer, including GBM. E2F1 is a transcription factor that controls the cell cycle progression and regulates DNA damage responses and the proliferation of pluripotent and neural stem cells. To test the potentiality of E2F1 as molecular target for GBM treatment, we suppressed the E2F1 gene (siRNA) in the U87MG cell line, aiming to inhibit cellular proliferation and modulate the radioresistance of these cells. Following E2F1 suppression, associated or not with gamma-irradiation, several assays (cell proliferation, cell cycle analysis, neurosphere counting, and protein expression) were performed in U87MG cells grown as monolayer or neurospheres. We found that siE2F1-suppressed cells showed reduced cell proliferation and increased cell death (sub-G1 fraction) in monolayer cultures, and also a significant reduction in the number of neurospheres. In addition, in irradiated cells, E2F1 suppression caused similar effects, with reduction of the number of neurospheres and neurosphere cell numbers relative to controls; these results suggest that E2F1 plays a role in the maintenance of GBM stem cells, and our results obtained in neurospheres are relevant within the context of radiation resistance. Furthermore, E2F1 suppression inhibited or delayed GBM cell differentiation by maintaining a reasonable proportion of CD133+ cells when grown at differentiation condition. Therefore, E2F1 proved to be an interesting molecular target for therapeutic intervention in U87MG cells.
Collapse
Affiliation(s)
- Paulo R D V Godoy
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil,
| | - Flavia S Donaires
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula L Montaldi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Abstract
DNA-dependent protein kinase (DNA-PK) is involved in many cellular pathways. It has a key role in the cellular response to DNA damage, in the repair of DNA double-strand break (DNA-DSBs) and as a consequence an important role in maintaining genomic integrity. In addition, DNA-PK has been shown to modulate transcription, to be involved in the development of the immune system and to protect telomeres. These pleotropic involvements and the fact that its expression is de-regulated in cancer have made DNA-PK an intriguing therapeutic target in cancer therapy, especially when combined with agents causing DNA-DSBs such as topoisomerase II inhibitors and ionizing radiation. Different small molecule inhibitors of DNA-PK have been recently synthesized and some are now being tested in clinical trials. This review discusses what is known about DNA-PK, its role in tumor biology, DNA repair and cancer therapy and critically discusses its inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy.
| |
Collapse
|
6
|
Contreras-Ochoa CO, López-Arellano ME, Roblero-Bartolon G, Díaz-Chávez J, Moreno-Banda GL, Reyna-Figueroa J, Munguía-Moreno JA, Madrid-Marina V, Lagunas-Martínez A. Molecular mechanisms of cell death induced in glioblastoma by experimental and antineoplastic drugs: New and old drugs induce apoptosis in glioblastoma. Hum Exp Toxicol 2019; 39:464-476. [PMID: 31823663 DOI: 10.1177/0960327119892041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive astrocytic tumors; it is resistant to most chemotherapeutic agents currently available and is associated with a poor patient survival. Thus, the development of new anticancer compounds is urgently required. Herein, we studied the molecular mechanisms of cell death induced by the experimental drugs resveratrol and MG132 or the antineoplastic drugs cisplatin and etoposide on a human GBM cell line (D54) and on primary cultured mouse astrocytes (PCMAs). Caspases, Bcl-2, inhibitors of apoptosis proteins (IAP) family members, and p53 were identified as potential molecular targets for these drugs. All drugs had a cytotoxic effect on D54 cells and PCMAs, with a similar inhibitory concentration (IC50) after 24 h. However, MG132 and cisplatin were more effective to induce apoptosis and autophagy than resveratrol and etoposide. Cell death by apoptosis involved the activation of caspases-3/7, -8, and -9, increased lysosomal permeability, LC3 lipidation, poly-(ADP-ribose) polymerase (PARP)-1 fragmentation, and a differential expression of genes related with apoptosis and autophagy like Mcl-1, Survivin, Noxa, LC3, and Beclin. In addition, apoptosis activation was partially dependent on p53 activation. Since experimental and antineoplastic drugs yielded similar results, further work is required to justify their use in clinical protocols.
Collapse
Affiliation(s)
- C O Contreras-Ochoa
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
| | - M E López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, México
| | - G Roblero-Bartolon
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
| | - J Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Ciudad de México, México
| | - G L Moreno-Banda
- Departamento de Investigación en Salud Ambiental, Centro de Investigación en Salud Poblacional, INSP, Cuernavaca, Morelos, México
| | - J Reyna-Figueroa
- Departamento de Enseñanza e Investigación, Hospital Central Sur de Alta Especialidad Petróleos Mexicanos, Ciudad de México, México
| | - J A Munguía-Moreno
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - V Madrid-Marina
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México.,Both the authors contributed equally to this work
| | - A Lagunas-Martínez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México.,Both the authors contributed equally to this work
| |
Collapse
|
7
|
Purin-6-one and pyrrolo[2,3-d]pyrimidin-4-one derivatives as potentiating agents of doxorubicin cytotoxicity. Future Med Chem 2018; 10:2029-2038. [PMID: 30067076 DOI: 10.4155/fmc-2018-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM DNA damage response plays an eminent role in patients' response to conventional chemotherapy and radiotherapy. Its inhibition is of great interest as it can overcome cancer cell resistance and reduce the effective doses of DNA damaging agents. Results & methodology: We have focused our research on phosphatidylinositol 3-kinase-related kinases and prepared 35 novel compounds through a scaffold hopping approach. The newly synthesized inhibitors were tested on a panel of nine cancer and one healthy cell lines alone and in combination with appropriate doses of doxorubicin. CONCLUSION Five novel compounds 4f, 10b, 15g, 7e and 15f in combination with doxorubicin showed significant antiproliferative effect on seven cancer cell lines while not affecting the cell growth alone.
Collapse
|
8
|
Haas B, Klinger V, Keksel C, Bonigut V, Kiefer D, Caspers J, Walther J, Wos-Maganga M, Weickhardt S, Röhn G, Timmer M, Frötschl R, Eckstein N. Inhibition of the PI3K but not the MEK/ERK pathway sensitizes human glioma cells to alkylating drugs. Cancer Cell Int 2018; 18:69. [PMID: 29755294 PMCID: PMC5935937 DOI: 10.1186/s12935-018-0565-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Intrinsic chemoresistance of glioblastoma (GBM) is frequently owed to activation of the PI3K and MEK/ERK pathways. These signaling cascades are tightly interconnected however the quantitative contribution of both to intrinsic resistance is still not clear. Here, we aimed at determining the activation status of these pathways in human GBM biopsies and cells and investigating the quantitative impact of both pathways to chemoresistance. Methods Receptor tyrosine kinase (RTK) pathways in temozolomide (TMZ) treatment naive or TMZ resistant human GBM biopsies and GBM cells were investigated by proteome profiling and immunoblotting of a subset of proteins. Resistance to drugs and RTK pathway inhibitors was assessed by MTT assays. Apoptotic rates were determined by Annexin V staining and DNA damage with comet assays and immunoblotting. Results We analyzed activation of RTK pathways by proteome profiling of tumor samples of patients which were diagnosed a secondary GBM and underwent surgery and patients which underwent a second surgery after TMZ treatment due to recurrence of the tumor. We observed substantial activation of the PI3K and MEK/ERK pathways in both groups. However, AKT and CREB phosphorylation was reduced in biopsies of resistant tumors while ERK phosphorylation remained unchanged. Subsequent proteome profiling revealed that multiple RTKs and downstream targets are also activated in three GBM cell lines. We then systematically describe a mechanism of resistance of GBM cell lines and human primary GBM cells to the alkylating drugs TMZ and cisplatin. No specific inhibitor of the upstream RTKs sensitized cells to drug treatment. In contrast, we were able to restore sensitivity to TMZ and cisplatin by inhibiting PI3K in all cell lines and in human primary GBM cells. Interestingly, an opposite effect was observed when we inhibited the MEK/ERK signaling cascade with two different inhibitors. Conclusions Temozolomide treatment naive and TMZ resistant GBM biopsies show a distinct activation pattern of the MEK/ERK and PI3K signaling cascades indicating a role of these pathways in resistance development. Both pathways are also activated in GBM cell lines, however, only the PI3K pathway seems to play a crucial role in resistance to alkylating agents and might serve as drug target for chemosensitization.
Collapse
Affiliation(s)
- Bodo Haas
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Veronika Klinger
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,2Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Christina Keksel
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Verena Bonigut
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Daniela Kiefer
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Julia Caspers
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,4Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany
| | - Julia Walther
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,2Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Maria Wos-Maganga
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Sandra Weickhardt
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Gabriele Röhn
- 5Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Marco Timmer
- 5Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Roland Frötschl
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Niels Eckstein
- 3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| |
Collapse
|
9
|
Pridham KJ, Varghese RT, Sheng Z. The Role of Class IA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunits in Glioblastoma. Front Oncol 2017; 7:312. [PMID: 29326882 PMCID: PMC5736525 DOI: 10.3389/fonc.2017.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) plays a critical role in the pathogenesis of cancer including glioblastoma, the most common and aggressive form of brain cancer. Targeting the PI3K pathway to treat glioblastoma has been tested in the clinic with modest effect. In light of the recent finding that PI3K catalytic subunits (PIK3CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, and PIK3CG/p110γ) are not functionally redundant, it is imperative to determine whether these subunits play divergent roles in glioblastoma and whether selectively targeting PI3K catalytic subunits represents a novel and effective strategy to tackle PI3K signaling. This article summarizes recent advances in understanding the role of PI3K catalytic subunits in glioblastoma and discusses the possibility of selective blockade of one PI3K catalytic subunit as a treatment option for glioblastoma.
Collapse
Affiliation(s)
- Kevin J Pridham
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Faculty of Health Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Zhang F, Shen M, Yang L, Yang X, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer. Cancer Biol Ther 2017; 18:606-615. [PMID: 28686074 DOI: 10.1080/15384047.2017.1345391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the cisplatin-resistance of lung cancer.
Collapse
Affiliation(s)
- Fuquan Zhang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Mingjing Shen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Li Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Xiaodong Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Ying Tsai
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Peter C Keng
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yongbing Chen
- b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Soo Ok Lee
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yuhchyau Chen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| |
Collapse
|
11
|
Durisova K, Salovska B, Pejchal J, Tichy A. Chemical inhibition of DNA repair kinases as a promising tool in oncology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:11-9. [DOI: 10.5507/bp.2015.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/10/2015] [Indexed: 11/23/2022] Open
|
12
|
Ung MH, Varn FS, Cheng C. IDEA: Integrated Drug Expression Analysis-Integration of Gene Expression and Clinical Data for the Identification of Therapeutic Candidates. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015; 4:415-25. [PMID: 26312165 PMCID: PMC4544055 DOI: 10.1002/psp4.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022]
Abstract
Cancer drug discovery is an involved process spanning efforts from several fields of study and typically requires years of research and development. However, the advent of high-throughput genomic technologies has allowed for the use of in silico, genomics-based methods to screen drug libraries and accelerate drug discovery. Here we present a novel approach to computationally identify drug candidates for the treatment of breast cancer. In particular, we developed a Drug Regulatory Score similarity metric to evaluate gene expression profile similarity, in the context of drug treatment, and incorporated time-to-event patient survival information to develop an integrated analysis pipeline: Integrated Drug Expression Analysis (IDEA). We were able to predict drug candidates that have been known and those that have not been known in the literature to exhibit anticancer effects. Overall, our method enables quick preclinical screening of drug candidates for breast cancer and other diseases by using the most important indicator of drug efficacy: survival.
Collapse
Affiliation(s)
- M H Ung
- Department of Genetics, Geisel School of Medicine at Dartmouth Hanover, New Hampshire, USA
| | - F S Varn
- Department of Genetics, Geisel School of Medicine at Dartmouth Hanover, New Hampshire, USA
| | - C Cheng
- Department of Genetics, Geisel School of Medicine at Dartmouth Hanover, New Hampshire, USA ; Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth Lebanon, New Hampshire, USA ; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth Lebanon, New Hampshire, USA
| |
Collapse
|
13
|
Montaldi AP, Godoy PRDV, Sakamoto-Hojo ET. APE1/REF-1 down-regulation enhances the cytotoxic effects of temozolomide in a resistant glioblastoma cell line. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:19-29. [PMID: 26520369 DOI: 10.1016/j.mrgentox.2015.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 01/25/2023]
Abstract
Temozolomide (TMZ) is widely used for patients with glioblastoma (GBM); however, tumor cells frequently exhibit drug-resistance. Base excision repair (BER) has been identified as a possible mediator of TMZ resistance, and an attractive approach to sensitizing cells to chemotherapy. Human apurinic/apyrimidinic endonuclease/redox factor-1 (APE1) is an essential enzyme with a role in the BER pathway by repairing abasic sites, and it also acts as a reduction factor, maintaining transcription factors in an active reduced state. Thus, we aimed to investigate whether the down-regulation of APE1 expression by siRNA can interfere with the resistance of GBM to TMZ, being evaluated by several cellular and molecular parameters. We demonstrated that APE1 knockdown associated with TMZ treatment efficiently reduced cell proliferation and clonogenic survival of resistant cells (T98G), which appears to be a consequence of increased DNA damage, S-phase arrest, and H2AX phosphorylation, resulting in apoptosis induction. On the contrary, for those assays, the sensitization effects of APE1 silencing plus TMZ treatment did not occur in the TMZ-sensitive cell line (U87MG). Interestingly, TMZ-treatment and APE1 knockdown significantly reduced cell invasion in both cell lines, but TMZ alone did not reduce the invasion capacity of U87MG cells, as observed for T98G. We also found that VEGF expression was down-regulated by TMZ treatment in T98G cells, regardless of APE1 knockdown, but U87MG showed a different response, since APE1 silencing counteracted VEGF induction promoted by TMZ, suggesting that the APE1-redox function may play an indirect role, depending on the cell line. The present results support the contribution of BER in the GBM resistance to TMZ, with a greater effect in TMZ-resistant, compared with TMZ-sensitive cells, emphasizing that APE1 can be a promising target for modifying TMZ tolerance. Furthermore, genetic characteristics of tumor cells should be considered as critical information to select an appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Ana P Montaldi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil
| | - Paulo R D V Godoy
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto - University of São Paulo (USP), Ribeirão Preto, S.P., Brazil.
| |
Collapse
|
14
|
Xavier DJ, Takahashi P, Evangelista AF, Foss-Freitas MC, Foss MC, Donadi EA, Passos GA, Sakamoto-Hojo ET. Assessment of DNA damage and mRNA/miRNA transcriptional expression profiles in hyperglycemic versus non-hyperglycemic patients with type 2 diabetes mellitus. Mutat Res 2015; 776:98-110. [PMID: 26364207 DOI: 10.1016/j.mrfmmm.2015.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 06/05/2023]
Abstract
The development of type 2 diabetes mellitus (T2D) is associated with a number of genetic and environmental factors. Hyperglycemia, a T2D hallmark, is related to several metabolic complications, comorbidities and increased DNA damage. However, the molecular alterations of a proper glucose control are still unclarified. In this study, we aimed to evaluate DNA damage (comet assay), as well as to compare the transcriptional expression (mRNA and miRNA analyzed by the microarray technique) displayed by peripheral blood mononuclear cells (PBMCs) from three distinct groups: hyperglycemic T2D patients (T2D-H, n=14), non-hyperglycemic T2D patients (T2D-N, n=15), and healthy non-diabetic individuals (n=16). The comet assay revealed significantly (p<0.05) higher levels of DNA damage in T2D-H group compared to both T2D-N and control groups, while a significant difference was not observed between the control and T2D-N groups. After bioinformatics analysis, the differentially expressed mRNAs were subjected to functional enrichment analysis (DAVID) and inflammatory response was among the enriched terms found when comparing T2D-N with controls and T2D-H with T2D-N. Concerning the gene set enrichment and gene set analyses, among the differentially expressed gene sets, three were of interest: regulation of DNA repair (T2D-H versus T2D-N), superoxide response (T2D-H versus control group), and response to endoplasmic reticulum stress (T2D-H versus control group). We also identified miRNAs related with T2D and hyperglycemia not yet associated with these conditions in the literature. Some of the differentially expressed mRNAs were among the predicted targets of the differentially expressed miRNAs. Our results showed the association of hyperglycemia with increased DNA damage and aberrant expression of miRNAs and genes related to several biological processes, such as inflammation, DNA repair, ROS production and antioxidant defense, highlighting the importance of proper glycemic control. Moreover, the transcriptional expression of miRNAs provided novel information for understanding the regulatory mechanisms involved in the T2D progression.
Collapse
Affiliation(s)
- Danilo J Xavier
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Paula Takahashi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Adriane F Evangelista
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Maria C Foss-Freitas
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14048-900 Ribeirão Preto, SP, Brazil
| | - Milton C Foss
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14048-900 Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14048-900 Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Disciplines of Genetics and Molecular Biology, Department of Morphology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo - USP, Av. Do Café, s/n, Monte Alegre, 14040-904 Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|