1
|
Ma X, Yu J, Ma Y, Huang X, Zhu K, Jiang Z, Zhang L, Liu Y. Explore the mechanism of yishenjiangya formula in the treatment of senile hypertension based on multi-omics technology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118886. [PMID: 39362324 DOI: 10.1016/j.jep.2024.118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Yishenjiangya formula (YSJ) is a traditional Chinese medicine (TCM) primarily composed of qi-tonifying components. This classic formula is commonly utilized to treat kidney qi deficiency in elderly patients with hypertension. According to TCM, maintaining a balance between qi and blood is crucial for stable blood pressure. Kidney qi deficiency can disrupt this balance, altering fluid shear force and, ultimately, leading to hypertension, particularly in elderly populations. Despite YSJ's efficacy in treating hypertension, its specific anti-hypertensive mechanisms remain unclear. AIM OF THE STUDY YSJ is commonly prescribed for elderly patients with hypertension. Earlier metabolomics studies demonstrated that YSJ exerts antihypertensive effects by influencing four key pathways: linoleic acid metabolism, glycerol phospholipid metabolism, arginine and proline metabolism, and steroid hormone biosynthesis. This study aims to combine metabolomic and proteomic analyses to thoroughly understand the molecular biological mechanisms responsible for YSJ's anti-hypertensive properties. METHODS Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) metabolomics, combined with Label-Free Quantitation (LFQ) proteomics, was employed to analyze serum samples from elderly individuals with and without hypertension pre- and post-YSJ intervention. Serum levels of candidate proteins were assessed using enzyme-linked immunosorbent assay, and receiver operating characteristic curves were used to evaluate the diagnostic performance of the target proteins. RESULTS Eight differentially expressed metabolites and three differentially expressed proteins were identified as potential therapeutic targets of YSJ. These substances are primarily involved in unsaturated fatty acid metabolism, fluid shear stress and atherosclerosis pathway, primary bile acid biosynthesis, proline metabolism, apoptosis, and endoplasmic reticulum stress. YSJ exerts its therapeutic effects on hypertension in the elderly by modulating these pathways. CONCLUSIONS YSJ effectively treats senile hypertension. By analyzing the correlation between therapeutic targets and pathways, YSJ's anti-hypertensive effect was achieved by inhibiting lipid peroxidation and matrix degeneration. Combining metabolomics and proteomics provides an effective method for uncovering YSJ's anti-hypertensive mechanisms.
Collapse
Affiliation(s)
- Xu Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Yongbo Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, Shanghai, China
| | - Xinyu Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Kunpeng Zhu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Zhen Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| | - Yingying Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
2
|
Ke C, Chen C, Yang M, Chen H, Li L, Ke Y. Revealing the mechanism of 755-nm long-pulsed alexandrite laser in inhibiting infantile hemangioma endothelial cells through transcriptome sequencing. Lasers Med Sci 2024; 39:37. [PMID: 38236327 PMCID: PMC10796541 DOI: 10.1007/s10103-023-03967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Laser therapy has shown promising outcomes in treating infantile hemangiomas. However, the molecular mechanisms underlying laser treatment for IH remain incompletely elucidated. This study aimed to unravel the molecular mechanisms of laser therapy in IH treatment. We evaluated the inhibitory effects of laser treatment on the proliferation and promotion of apoptosis in human hemangioma endothelial cells (HemECs) through cell counting kit-8 (CCK-8) assay, Hoechst 33342 staining, and flow cytometric analysis. Transcriptome sequencing analysis of HemECs following laser treatment revealed a significant decrease in the expression level of the GSTM5 gene. The qRT-PCR and western blot analysis also showed that GSTM5 expression in HemECs was downregulated compared to human umbilical vein endothelial cells (HUVECs), and concomitantly, the p62-Nrf2 pathway was suppressed. Using siRNA to downregulate GSTM5 expression, we observed that inhibiting GSTM5 expression could restrain cell proliferation, elevate intracellular ROS levels, and induce apoptosis in HemECs. Furthermore, upon inhibition of the p62-Nrf2 pathway using p62-specific siRNA, a significant decrease in GSTM5 expression and an elevation in intracellular ROS levels were noted in laser-treated HemECs. These findings suggested that laser treatment may operate by inhibiting the p62-Nrf2 pathway, thereby downregulating GSTM5 expression, elevating ROS levels, and consequently inducing apoptosis in HemECs.
Collapse
Affiliation(s)
- Chen Ke
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, 325000, Zhejiang, China
| | - Changhan Chen
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Ming Yang
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Hao Chen
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Liqun Li
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, 325000, Zhejiang, China.
| | - Youhui Ke
- Department of Cosmetology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China.
- Wenzhou Key Laboratory of Laser Cosmetology, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
3
|
García-González I, Pérez-Mendoza G, Solís-Cárdenas A, Flores-Ocampo J, Herrera-Sánchez LF, Mendoza-Alcocer R, González-Herrera L. Genetic variants of PON1, GSTM1, GSTT1, and locus 9p21.3, and the risk for premature coronary artery disease in Yucatan, Mexico. Am J Hum Biol 2021; 34:e23701. [PMID: 34766662 DOI: 10.1002/ajhb.23701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Genetic variants of PON1, rs70587, rs662, rs854560, GSTM1, and GSTT1 and two single nucleotide polymorphisms (SNP) at 9p21.3 locus, rs1333049, and rs2383207; were evaluated in association with the risk for premature coronary artery disease (CAD) in a population of Yucatan, Mexico. These genes are involved in the inactivation of pro-oxidants and pro-inflammatory mediators, lipid and xenobiotic metabolism, detoxification of reactive oxygen species, and regulation of cellular proliferation playing key roles in the pathogenesis of atherosclerosis. METHODS We conducted a matched case-control study with 98 CAD cases and 101 healthy controls. Genotyping of PON1 and 9p21.2 SNP was performed by real time-PCR and for GSTM1 and GSTT1 with multiplex-PCR. Odds ratios (OR) were calculated to estimate association and generalized multifactor dimensionality reduction (GMDR) algorithm to identify gene-gene and gene-environment interactions. RESULTS The distribution of all allele/genotype frequencies in controls was within Hardy-Weinberg expectations (p > .05) except for GSTM1. The allele/genotype frequencies of the GSTT1 null were significantly higher in CAD cases than in controls, suggesting association with higher risk for developing CAD. The other SNPs did not show any significant independent association with premature CAD. GMDR revealed a significant interaction between GSTT1 and LL55 genotype. Likewise, the body mass index (BMI) and smoking also showed an interaction with GSTT1. CONCLUSION The GSTT1 null allele/genotype is associated with an increased risk of developing premature CAD, the effect of which is not modified by cardiovascular risk factors in the population of Yucatan.
Collapse
Affiliation(s)
- Igrid García-González
- Laboratorio de Genética, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán (UADY), Mérida, Yucatán, Mexico
| | - Gerardo Pérez-Mendoza
- Laboratorio de Genética, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán (UADY), Mérida, Yucatán, Mexico
| | | | - Jorge Flores-Ocampo
- Servicio de Cardiología, Hospital Regional del ISSSTE, Mérida, Yucatán, Mexico
| | | | - Renan Mendoza-Alcocer
- Centro Estatal de la transfusión sanguínea, Servicios de Salud de Yucatán, Mérida, Yucatán, Mexico
| | - Lizbeth González-Herrera
- Laboratorio de Genética, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán (UADY), Mérida, Yucatán, Mexico
| |
Collapse
|
4
|
Zivkovic M, Bubic M, Kolakovic A, Dekleva M, Stankovic G, Stankovic A, Djuric T. The association of glutathione S-transferase T1 and M1 deletions with myocardial infarction. Free Radic Res 2021; 55:267-274. [PMID: 34003050 DOI: 10.1080/10715762.2021.1931166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glutathione S-transferases (GSTs) are the family of enzymes involved in the second line of defense against oxidative stress (OS). The lack of GSTT1/GSTM1 enzyme quantity or activity, due to the presence of homozygous deletion compromises antioxidative defense resulting in OS. OS is the critical mechanism in the pathophysiology of atherosclerosis, coronary artery disease, and myocardial infarction (MI). The increase in reactive oxygen species together with the process of apoptosis plays a role in left ventricular remodeling (LVR) after MI. The associations of GSTT1 and GSTM1 gene polymorphisms with the risk of MI are inconsistent. The aim was to analyze the association of GSTT1/GSTM1 null genotypes with first MI and LVR 8 months after the MI. The study involved 330 controls and 438 consecutive patients with symptoms and signs of first MI. The subgroup of 150 MI patients was prospectively followed up for 6 months. Evidence of maladaptive LVR was obtained by 2D Doppler echocardiography 3-5 days and 6 months after the MI. A multiplex polymerase chain reaction was used to detect the deletion in GSTT1 and GSTM1 genes. GSTM1 null genotype was significantly and independently associated with first MI (adjusted OR = 1.45 95% CI 1.03-2.03, p = 0.03). Association of double null genotypes with maladaptive LVR in patients 6 months after the first MI was no longer significant after adjustment for factors that differed significantly between patients with and without maladaptive LVR. This study demonstrated the association of GSTM1 null genotypes with the risk of MI in the Serbian population.
Collapse
Affiliation(s)
- Maja Zivkovic
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Bubic
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Kolakovic
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Dekleva
- Department of Cardiology, University Clinical Center "Zvezdara", Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Goran Stankovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Cardiology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandra Stankovic
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Djuric
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Morales-Prieto N, Ruiz-Laguna J, Sheehan D, Abril N. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:150-167. [PMID: 29554563 DOI: 10.1016/j.envpol.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/19/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julia Ruiz-Laguna
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - David Sheehan
- College of Arts and Science, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
6
|
Cai Y, Yang Y, Chen X, Wu G, Zhang X, Liu Y, Yu J, Wang X, Fu J, Li C, Jose PA, Zeng C, Zhou L. Circulating 'lncRNA OTTHUMT00000387022' from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res 2016; 112:714-724. [PMID: 26857419 DOI: 10.1093/cvr/cvw022] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 01/14/2023] Open
Abstract
AIMS Long non-coding RNAs (lncRNAs) have been found to be involved in the pathogenesis of coronary artery disease (CAD). However, it remains to be established whether or not circulating lncRNAs can serve as biomarkers of CAD. METHODS AND RESULTS Using a microarray-based lncRNA expression profiling, we found 86 lncRNAs that were differentially expressed in circulating peripheral blood monocytes and plasma from 15 CAD patients and 15 control subjects. After choosing a consistent criterion (average normalized intensity ≥7 with significance <0.005) and confirmed by quantitative PCR, only three lncRNAs (CoroMarker, BAT5, and IL21R-AS1) remained as candidate CAD biomarkers. Using the analysis of area under the curve (AUC) of the receiver-operating characteristic in another pilot group and another larger cohort, CoroMarker was found to be the best candidate biomarker for CAD with an AUC of 0.920 and 95% confidence interval of 0.892-0.947. CoroMarker was independent from known CAD risk factors and other cardiovascular diseases. In a prospective study, we found that the sensitivity and specificity of CoroMarker were 76 and 92.5%, respectively. Functional enrichment analysis showed CoroMarker to be clustered with genes positively associated with signal transduction, transmembrane transport, synaptic transmission, and innate immunity and negatively associated with inflammation. These findings were validated in THP-1 cells; CoroMarker siRNA treatment decreased the concentrations of proinflammatory cytokines [interleukin (IL)-1β, IL-6, and tumour necrosis factor α] in the culture medium. CONCLUSION The present study suggests that CoroMarker is a novel and specific biomarker of CAD.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Yujia Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Department of Neurology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Xiongwen Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Genze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Xiaoqun Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Yukai Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Junyi Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Jinjuan Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Chuanwei Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China .,Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China .,Chongqing Institute of Cardiology, Chongqing, P.R. China
| |
Collapse
|
7
|
Vargas Nunes SO, Pizzo de Castro MR, Moreira EG, Guembarovski RL, Barbosa DS, Vargas HO, Piccoli de Melo LG, Bortolasci CC, Watanabe MAE, Dodd S, Berk M, Maes M. Association of paraoxonase (PON)1 activity, glutathione S-transferase GST T1/M1 and STin.2 polymorphisms with comorbidity of tobacco use disorder and mood disorders. Neurosci Lett 2015; 585:132-7. [DOI: 10.1016/j.neulet.2014.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022]
|