1
|
Moosavi R, Alizadeh N. Silver Nanoclusters as Label Free Non-enzymatic Fast Glucose Assay with the Fluorescent Enhancement Signal. J Fluoresc 2024; 34:1865-1876. [PMID: 37656303 DOI: 10.1007/s10895-023-03407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
A simple and low-cost green preparation method was used for BSA capped silver nanoclusters (BSA-Ag NCs) as turn on fluorescent probe for glucose. Non-enzymatic fast glucose detection assay with a widest concentration range was proposed which requires neither nanoclusters (NCs) modification nor complicated enzyme immobilization. The DLS analysis, HRTEM patterns, fluorescence and UV-visible measurement well supported the synthesis product. The advantages of the fabricated glucose sensor based on fluorescence increasing of probe compared to other established optical techniques was inspected and summarized as well. The glucose sensor exhibited a high sensitivity, fast response time (in seconds), satisfactory selectivity, well stability (at least two months), low detection limit (31 µmol L- 1) and a wide concentration response (three orders of magnitudes) to glucose between 0.1 and 92 mmol L- 1 as calibration plot. A theoretical model of the sensing mechanism based on the binding interaction of glucose to BSA-Ag NCs is proposed and data fitting demonstrated a good agreement between the experimental and theoretically calculated fluorescence data. The facile preparation and excellent sensing performance of BSA-Ag NCs in the real samples (plasma and juice) make sure that synthesized probe material is a promising candidate for advanced enzyme-free glucose sensing approach.
Collapse
Affiliation(s)
- Razieh Moosavi
- Departmentof Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Naader Alizadeh
- Departmentof Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
2
|
Zhang H, Sun S, Wang Y, Fei Z, Cao J. Binding mechanism of five typical sweeteners with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:40-47. [PMID: 30015031 DOI: 10.1016/j.saa.2018.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
In this work, the interactions between bovine serum albumin (BSA) and five sweeteners including aspartame (APM), acesulfame (AK), sucralose (TGS), sodium cyclamate (SC), and rebaudioside-A (REB-A) have been studied by multispectroscopic techniques, and molecular simulation in order to provide much useful information for the application of new and safer artificial sweeteners. Fluorescence quenching assays indicated that the formation of complexes between sweeteners and BSA mainly induced the fluorescence quenching of protein and the binding site number were about 1 indicting that there is one mainly binding site of APM, AK, TGS, SC, or REB-A in domain of BSA with relatively weak interactions. Molecular modeling results indicated that hydrogen bonding interactions were the mainly binding forces of sweeteners with BSA. Circular dichroism spectra indicated that APM and REB-A obviously induced the secondary structure changes of BSA. The presence of APM increased the fraction of α-Helix of BSA from 65.4% to 73.8%, while the presence of REB-A resulted in decreasing the fraction of α-helix of BSA from 65.4% to 51.2%. The melting temperature studies showed that these five sweeteners except REB-A act as stabilizers to increase the thermal stability of BSA during the thermal denaturation process. In addition, AK, TGS, and SC obviously increased the esterase-like activity of BSA, and such loss of activity of BSA induced by APM and REB-A.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Shixin Sun
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| | - Zhenghao Fei
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Jian Cao
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
3
|
Mansouri-Torshizi H, Khosravi F, Ghahghaei A, Shahraki S, Zareian-Jahromi S. Investigation on the interaction of newly designed potential antibacterial Zn(II) complexes with CT-DNA and HSA. J Biomol Struct Dyn 2017; 36:2713-2737. [DOI: 10.1080/07391102.2017.1363086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Fatemeh Khosravi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Arezou Ghahghaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | | | | |
Collapse
|
4
|
Li M, Huang S, Cai Q, Xie Y. Spectroscopic investigation and in vitro cytotoxic activity toward HepG2 cells of a copper compound complexed with human serum albumin. LUMINESCENCE 2017; 32:888-898. [PMID: 28371207 DOI: 10.1002/bio.3272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 10/10/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
The human serum albumin (HSA) interaction of a mixed-ligand copper compound (1) with an imidazole and taurine Schiff base derived from salicylaldehyde and taurine was investigated using fluorescence spectroscopy, UV-vis spectroscopy, time-resolved fluorescence spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and a molecular docking technique. The results of fluorescence and time-resolved fluorescence spectroscopy indicated that 1 can effectively quench the HSA fluorescence by a static mechanism. Binding constants (K) and the number of binding sites (n ≈ 1) were calculated using modified Stern-Volmer equations. The thermodynamic parameters were calculated. UV-vis, CD and FT-IR spectroscopy measurements confirm the alterations in the HSA secondary structure induced by 1. The site marker competitive experiment confirms that 1 is located in subdomain IB of HSA. The combination of molecular docking results and fluorescence experimental results reveal that hydrophobic interaction and hydrogen bonds are the predominant intermolecular forces stabilizing the 1-HSA complex. The 1-HSA complex increases approximately three times its cytotoxicity in cancer cells but has no effect on normal cells in vitro. Compared with unbound 1, the 1-HSA complex promotes HepG2 cells apoptosis and also has a stronger capacity for cell cycle arrest at the S phase of HepG2 cells.
Collapse
Affiliation(s)
- Mei Li
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - ShuJuan Huang
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Qingyou Cai
- College of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - YongRong Xie
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Liu H, Dong Y, Wu J, Chen C, Liu D, Zhang Q, Du S. Evaluation of interaction between imidazolium-based chloride ionic liquids and calf thymus DNA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1-7. [PMID: 27203596 DOI: 10.1016/j.scitotenv.2016.05.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 05/23/2023]
Abstract
With ionic liquids (ILs) being widely used, the toxicity of many ILs has been studied and verified. However the mechanism underlying the interaction between ILs and DNA needs to be investigated. In this study, the interaction of three imidazolium-based ILs ([C8mim]Cl, [C12mim]Cl, and [C16mim]Cl) with calf thymus DNA (ctDNA) was investigated by UV absorption spectroscopy and fluorescence spectroscopy. An intense interaction between [Cnmim]Cl and ctDNA was observed, involving a hypochromic effect or even a hyperchromic effect, in the UV absorption spectrum of ctDNA at 260nm. The Tm of ctDNA increased over 10°C after binding with [Cnmim]Cl, and the KSV values of [Cnmim]Cl-ctDNA quenched by potassium iodide (KI) were lower than those of [Cnmim]Cl. The fluorescence intensity of ctDNA-ethidium bromide (EB) was gradually quenched as the [Cnmim]Cl concentration increased. The results indicated that ctDNA interacted with [Cnmim]Cl through an intercalation binding mode. The mechanism of fluorescence quenching of [Cnmim]Cl with ctDNA involved static quenching. The binding constant between [Cnmim]Cl and ctDNA were 1443, 11169, and 67189, and the number of binding sites were 0.89, 1.10, and 1.27 at 298K, for [C8mim]Cl, [C12mim]Cl, and [C16mim]Cl, respectively. The results indicated that the intercalation binding between the three [Cnmim]Cl and ctDNA increased with increasing IL-alkyl chain length. These results will aid in the understanding of the mechanism of toxicity and of the biologically mediated environmental processes of ILs.
Collapse
Affiliation(s)
- Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jian Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Caidong Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Dingdong Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
6
|
Wang Q, Ma X, He J, Sun Q, Li Y, Li H. Binding properties of drospirenone with human serum albumin and lysozyme in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:612-8. [PMID: 26448295 DOI: 10.1016/j.saa.2015.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 07/28/2015] [Accepted: 09/26/2015] [Indexed: 05/19/2023]
Abstract
The interaction of drospirenone (DP) with human serum albumin (HSA)/lysozyme (LYZ) was investigated using different optical techniques and molecular models. Results from the emission and time resolved fluorescence studies revealed that HSA/LYZ emission quenching with DP was initiated by static quenching mechanism. The LYZ-DP system was more easily influenced by temperature than the HSA-DP system. Displacement experiments demonstrated that the DP binding site was mainly located in site 1 of HSA. Based on the docking methods, DP was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located. Conformation study showed that DP had different effects on the local conformation of HSA and LYZ molecules.
Collapse
Affiliation(s)
- Qing Wang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiangling Ma
- College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jiawei He
- College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qiaomei Sun
- College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yuanzhi Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
7
|
Gou Y, Zhang Y, Qi J, Zhou Z, Yang F, Liang H. Enhancing the copper(II) complexes cytotoxicity to cancer cells through bound to human serum albumin. J Inorg Biochem 2015; 144:47-55. [DOI: 10.1016/j.jinorgbio.2014.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
8
|
Chen M, Rong L, Chen X. A simple and sensitive detection of glutamic-pyruvic transaminase activity based on fluorescence quenching of bovine serum albumin. RSC Adv 2015. [DOI: 10.1039/c5ra24162f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is well known that Cu(ii) can coordinate withl-alanine (Cu–Ala), which can be destroyed through the addition of glutamic-pyruvic transaminase (GPT) since GPT can effectively catalyze the conversion ofl-alanine into keto-acetic acid.
Collapse
Affiliation(s)
- Miao Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Liya Rong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
- Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization
| |
Collapse
|