1
|
Aguilar‐Chaparro MA, Rivera‐Pineda SA, Hernández‐Galdámez HV, Ríos‐Castro E, Garibay‐Cerdenares OL, Piña‐Vázquez C, Villa‐Treviño S. Transforming Growth Factor-β Modulates Cancer Stem Cell Traits on CD44 Subpopulations in Hepatocellular Carcinoma. J Cell Biochem 2025; 126:e70003. [PMID: 39943801 PMCID: PMC11833284 DOI: 10.1002/jcb.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/29/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is a formidable malignancy, with growing interest in identifying cancer stem cells (CSCs) as potential therapeutic targets. CD44 isoforms have emerged as promising CSC markers in HCC, often associated with epithelial-mesenchymal transition (EMT) induced by transforming growth factor-beta (TGF-β). However, the intricate relationship between CSC traits, CD44 isoforms, and TGF-β effects on CD44 subpopulations in HCC remains unclear. This study aimed to clarify how TGF-β influences proteomic changes and CSC traits in subpopulations expressing standard CD44 isoform (CD44std) and CD44 variant 9 (CD44v9). Treating SNU-423 cells with TGF-β lead to notable morphological changes, resembling a spindle-like phenotype, along with reductions in CD44v9+ subpopulations and differential CD44std expression. Proteomic analysis highlighted significant alterations in signaling pathways, particularly the mitogen-activated protein kinase (MAPK) pathway. Validation experiments demonstrated upregulation in CD44std cells and downregulation in CD44v9 cells post-TGF-β treatment. Furthermore, TGF-β exerted regulatory influence over Sox2 and Nanog expression, resulting in increased colony and spheroid formation in CD44std cells but decreased capabilities in CD44v9 cells. TGF-β also enhanced the migratory and invasive properties of both subpopulations through EMT, alongside increased adhesive abilities in CD44v9 cells. These findings illuminate the dynamic interplay between TGF-β and CD44std/CD44v9 subpopulations, emphasizing the role of MAPK signaling and modulation of CSC traits. This research contributes to understanding the dynamic interplay between CD44 isoforms and TGF-β in HCC.
Collapse
Affiliation(s)
| | - Sonia Andrea Rivera‐Pineda
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)México CityMéxico
| | | | - Emmanuel Ríos‐Castro
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y Estudios Avanzados del IPNCiudad de MéxicoMéxico
| | | | - Carolina Piña‐Vázquez
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)México CityMéxico
| | - Saúl Villa‐Treviño
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)México CityMéxico
| |
Collapse
|
2
|
Yang ZY, Zhang WL, Jiang CW, Sun G. PCBP1-mediated regulation of WNT signaling is critical for breast tumorigenesis. Cell Biol Toxicol 2023; 39:2331-2343. [PMID: 35639300 DOI: 10.1007/s10565-022-09722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Loss of expression or protein kinase B (Akt1)-mediated post-translational modification of the RNA binding protein Poly r(C) binding protein 1 (PCBP1) is closely related to metastatic advancement of breast cancer. However, the role of PCBP1 in tumorigenesis is not completely defined. Using a xenograft orthotopic model of breast tumorigenesis (4T1-Pcbp1-/-), we show here that PCBP1 knockdown-induced tumorigenesis is inhibited by activation of the WNT signaling via treating with the glycogen synthase kinase 3 beta inhibitor TWS119, but not the Akt2/Akt3 inhibitor GSK690693. Mass cytometry-based evaluation of the tumor microenvironment (TME) revealed significantly more regulatory T cells (Tregs) and significantly less cytotoxic T cells in 4T1-Pcbp1-/-mice treated with saline control in comparison to mice treated with TWS119. Infiltrating cytotoxic T cells were phenotypically and functionally exhausted. Treatment with TWS119 resulted in rescue of cytotoxic T cell function and inhibition of suppressor activity of Tregs. Using cytotoxic T cells isolated from healthy donors, we show that TWS119-induced WNT signaling-mediated inhibition of cytotoxic T cell expansion is reliant on expression of PCBP1. In conclusion, decreased PCBP1 expression favors breast tumorigenesis by potentiating skewing of tumor infiltrating T cells towards Tregs, thereby effectively suppressing anti-tumor immunity.
Collapse
Affiliation(s)
- Zhao-Ying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China
| | - Wen-Long Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Cheng-Wei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Guang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China.
| |
Collapse
|
3
|
Lin L, Li H, Shi D, Liu Z, Wei Y, Wang W, Wu D, Li B, Guo Q. Depletion of C12orf48 inhibits gastric cancer growth and metastasis via up-regulating Poly r(C)-Binding Protein (PCBP) 1. BMC Cancer 2022; 22:123. [PMID: 35100974 PMCID: PMC8802463 DOI: 10.1186/s12885-022-09220-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 01/19/2022] [Indexed: 01/20/2023] Open
Abstract
Background Gastric cancer remains a major cause of cancer-related death worldwide. C12orf48, also named PARP1 binding protein, is over-expressed in several cancers. However, the expression profile and potential roles of C12orf48 in gastric cancer are largely unknown. Methods We used bioinformatics approaches and tissue microarray immunohistochemistry to analyze the expression profile of C12orf48 in gastric cancer tissues. Plasmid-mediated over-expression or knockdown were performed. CCK-8 assays and flow cytometry were employed to evaluate cellular proliferation and apoptosis respectively. Transwell assays were used to assess migrative and invasive abilities. The roles of C12orf48 were also evaluated in a xenograft tumor model. Results We found that C12orf48 was over-expressed in gastric cancer tissue, which associated with advanced stage and poor prognosis. In vitro and in vivo experiments showed depletion of C12orf48 attenuated cancer growth, while facilitated apoptosis. Further, the expression of Poly r(C)-Binding Protein (PCBP) 1 was found negatively regulated by C12orf48. Intended up-regulation of PCBP1 prevented C12orf48-mediated proliferation and rescued cells from apoptosis. Besides, C12orf48 promoted cellular migration and invasion, with E-cadherin down-regulated while vimentin and N-cadherin up-regulated, which was reversed by up-regulated PCBP1. Conclusions Our findings indicate that depletion of C12orf48 inhibited gastric cancer growth and metastasis via up-regulating PCBP1. Targeting C12orf48-PCBP1 axis may be a potential therapeutic strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09220-0.
Collapse
Affiliation(s)
- Lele Lin
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang RoadZhejiang Province, Hangzhou City, 310000, P. R. China
| | - Hongbo Li
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang RoadZhejiang Province, Hangzhou City, 310000, P. R. China
| | - Dike Shi
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang RoadZhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhiqiang Liu
- Department of General Surgery, Anyang Tumor Hospital, 1# North Huanbin Road, Henan Province, 455000, Anyang City, PR China
| | - Yunhai Wei
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, 198# Hongqi RoadZhejiang Province, Huzhou City, 31300, P. R. China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, 568# North Zhongxing RoadZhejiang Province, Shaoxing City, 312000, P. R. China
| | - Dan Wu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang RoadZhejiang Province, Hangzhou City, 310000, P. R. China
| | - Baozhong Li
- Department of General Surgery, Anyang Tumor Hospital, 1# North Huanbin Road, Henan Province, 455000, Anyang City, PR China.
| | - Qingqu Guo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang RoadZhejiang Province, Hangzhou City, 310000, P. R. China.
| |
Collapse
|
4
|
Lu N, Zhang M, Lu L, Liu YZ, Zhang HH, Liu XD. miRNA‑490‑3p promotes the metastatic progression of invasive ductal carcinoma. Oncol Rep 2021; 45:706-716. [PMID: 33416185 PMCID: PMC7757091 DOI: 10.3892/or.2020.7880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA/mir)‑490‑3p has been defined as a tumor suppressor in different types of cancer, including breast cancer. However, miR‑490‑3p has been shown to function as a tumor suppressor and promoter in a context‑dependent manner in hepatocellular and lung cancer. Contrary to previous studies, the present study revealed that miR‑490‑3p expression was significantly higher in invasive ductal carcinoma (IDC) tissue specimens, the most common form of breast cancer, compared to tumor‑adjacent normal tissue specimens (n=20). Its expression was also higher in the more metastatic breast cancer cell line, MDA‑MB‑231, compared to the non‑metastatic breast cancer cell line, MCF7, and the moderately metastatic breast cancer cell line, MDA‑MB‑468. The expression of miR‑490‑3p was induced following transforming growth factor (TGF)‑β‑induced epithelial‑to‑mesenchymal transition (EMT) in MCF10A cells. Gain‑and loss‑of‑function assays revealed that the expression of miR‑490‑3p regulated the proliferation, colony formation, EMT, migration and invasion in vitro, but not the apoptosis of MDA‑MB‑468 and MDA‑MB‑231 cells. The knockdown of miR‑490‑3p expression in MDA‑MB‑231 cells inhibited experimental metastasis in a tumor xenograft assay. As in lung cancer, miR‑490‑3p was found to target and downregulate the expression of the tumor suppressor RNA binding protein poly r(C) binding protein 1 (PCBP1). PCBP1 protein and miR‑490‑3p expression inversely correlated in patients with ductal carcinoma in situ (DCIS; n=10; no nodal involvement) and IDC (n=10; different stages of metastatic progression) with a significantly higher miR‑490‑3p expression in patients with IDC compared to those with DCIS. The expression of miR‑490‑3p was negatively associated with both overall and disease‑free survival in the patients with breast cancer included in the present study. On the whole, the results confirm a pro‑metastatic role of miR‑490‑3p in IDC, establishing it as a biomarker for disease progression in these patients.
Collapse
MESH Headings
- Animals
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- Disease Progression
- Disease-Free Survival
- Epithelial-Mesenchymal Transition/genetics
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Mastectomy
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- RNA-Binding Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ning Lu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Lu
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yan-Zhao Liu
- Department of Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hai-Hong Zhang
- Department of Human Resources, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Xiao-Dong Liu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| |
Collapse
|
5
|
Zhang X, Di C, Chen Y, Wang J, Su R, Huang G, Xu C, Chen X, Long F, Yang H, Zhang H. Multilevel regulation and molecular mechanism of poly (rC)-binding protein 1 in cancer. FASEB J 2020; 34:15647-15658. [PMID: 33058239 DOI: 10.1096/fj.202000911r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023]
Abstract
Poly (rC)-binding protein 1 (PCBP1), an RNA- or DNA-binding protein with a relative molecular weight of 38 kDa, which is characterized by downregulation in many cancer types. Numerous cases have indicated that PCBP1 could be considered as a tumor suppressor to inhibit tumorigenesis, development, and metastasis. In the current review, we described the multilevel regulatory roles of PCBP1, including gene transcription, alternative splicing, and translation of many cancer-related genes. Additionally, we also provided a brief overview about the inhibitory effect of PCBP1 on most common tumors. More importantly, we summarized the current research status about PCBP1 in hypoxic microenvironment, autophagy, apoptosis, and chemotherapy of cancer cells, aiming to clarify the molecular mechanisms of PCBP1 in cancer. Taken together, in-depth study of PCBP1 in cancer may provide new ideas for cancer therapy.
Collapse
Affiliation(s)
- Xuetian Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ruowei Su
- The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guomin Huang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Caipeng Xu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Long
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow, Soochow, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers (Basel) 2020; 12:cancers12092435. [PMID: 32867128 PMCID: PMC7564582 DOI: 10.3390/cancers12092435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box B (HMGB) proteins are overexpressed in different types of cancers such as epithelial ovarian cancers (EOC). We have determined the first interactome of HMGB1 and HMGB2 in epithelial ovarian cancer (the EOC-HMGB interactome). Libraries from the SKOV-3 cell line and a primary transitional cell carcinoma (TCC) ovarian tumor were tested by the Yeast Two Hybrid (Y2H) approach. The interactome reveals proteins that are related to cancer hallmarks and their expression is altered in EOC. Moreover, some of these proteins have been associated to survival and prognosis of patients. The interaction of MIEN1 and NOP53 with HMGB2 has been validated by co-immunoprecipitation in SKOV-3 and PEO1 cell lines. SKOV-3 cells were treated with different anti-tumoral drugs to evaluate changes in HMGB1, HMGB2, MIEN1 and NOP53 gene expression. Results show that combined treatment of paclitaxel and carboplatin induces a stronger down-regulation of these genes in comparison to individual treatments. Individual treatment with paclitaxel or olaparib up-regulates NOP53, which is expressed at lower levels in EOC than in non-cancerous cells. On the other hand, bevacizumab diminishes the expression of HMGB2 and NOP53. This study also shows that silencing of these genes affects cell-viability after drug exposure. HMGB1 silencing causes loss of response to paclitaxel, whereas silencing of HMGB2 slightly increases sensitivity to olaparib. Silencing of either HMGB1 or HMGB2 increases sensitivity to carboplatin. Lastly, a moderate loss of response to bevacizumab is observed when NOP53 is silenced.
Collapse
|
7
|
Yang J, Yin Z, Li Y, Liu Y, Huang G, Gu C, Fei J. The Identification of Long Non-coding RNA H19 Target and Its Function in Chronic Myeloid Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1368-1378. [PMID: 32160707 PMCID: PMC7044501 DOI: 10.1016/j.omtn.2020.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
H19 is a long non-coding RNA which was lowly expressed in chronic myeloid leukemia (CML). Here, we found that the overexpression of H19 significantly inhibited cell viability and colony formation and prolongs survival in CML cell lines and three xenografted mouse models. The H19 target proteins and microRNAs (miRNAs) were identified using a combination of computational prediction and RNA pull-down, including PCBP1, FUS protein, and miR-19a-3p and miR-106b-5p. Targeting PCBP1, FUS protein, miR-19a-3p, and miR-106b-5p significantly inhibits the cell growth and colony formation of CML cell lines. Co-overexpression of H19 and PCBP1, FUS, miR-19a-3p, and miR-106b-5p decreases the inhibitory effect of H19 in CML. These findings might provide a novel molecular insight into CML.
Collapse
Affiliation(s)
- Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Engineering Technology Research Center of Drug Development for Small Nucleic Acid, Guangdong Province, China; Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Engineering Technology Research Center of Drug Development for Small Nucleic Acid, Guangdong Province, China; Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China; Insititute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou 510632, China
| | - Yumin Li
- Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Engineering Technology Research Center of Drug Development for Small Nucleic Acid, Guangdong Province, China; Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Engineering Technology Research Center of Drug Development for Small Nucleic Acid, Guangdong Province, China; Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China
| | - Chunming Gu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Engineering Technology Research Center of Drug Development for Small Nucleic Acid, Guangdong Province, China; Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China; Insititute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou 510632, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Engineering Technology Research Center of Drug Development for Small Nucleic Acid, Guangdong Province, China; Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou, China; Insititute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Shi H, Li H, Yuan R, Guan W, Zhang X, Zhang S, Zhang W, Tong F, Li L, Song Z, Wang C, Yang S, Wang H. PCBP1 depletion promotes tumorigenesis through attenuation of p27 Kip1 mRNA stability and translation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:187. [PMID: 30086790 PMCID: PMC6081911 DOI: 10.1186/s13046-018-0840-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022]
Abstract
Background Poly C Binding Protein 1 (PCBP1) is an RNA-binding protein that binds and regulates translational activity of subsets of cellular mRNAs. Depletion of PCBP1 is implicated in various carcinomas, but the underlying mechanism in tumorigenesis remains elusive. Methods We performed a transcriptome-wide screen to identify novel bounding mRNA of PCBP1. The bind regions between PCBP1 with target mRNA were investigated by using point mutation and luciferase assay. Cell proliferation, cell cycle, tumorigenesis and cell apoptosis were also evaluated in ovary and colon cancer cell lines. The mechanism that PCBP1 affects p27 was analyzed by mRNA stability and ribosome profiling assays. We analyzed PCBP1 and p27 expression in ovary, colon and renal tumor samples and adjacent non-tumor tissues using RT-PCR, Western Blotting and immunohistochemistry. The prognostic significance of PCBP1 and p27 also analyzed using online databases. Results We identified cell cycle inhibitor p27Kip1 (p27) as a novel PCBP1-bound transcript. We then demonstrated that binding of PCBP1 to p27 3’UTR via its KH1 domain mainly stabilizes p27 mRNA, while enhances its translation to fuel p27 expression, prior to p27 protein degradation. The upregulated p27 consequently inhibits cell proliferation, cell cycle progression and tumorigenesis, whereas promotes cell apoptosis under paclitaxel treatment. Conversely, knockdown of PCBP1 in turn compromises p27 mRNA stability, leading to lower p27 level and tumorigenesis in vivo. Moreover, forced depletion of p27 counteracts the tumor suppressive ability of PCBP1 in the same PCBP1 over-expressing cells. Physiologically, we showed that decreases of both p27 mRNA and its protein expressions are well correlated to PCBP1 depletion in ovary, colon and renal tumor samples, independent of the p27 ubiquitin ligase Skp2 level. Correlation of PCBP1 with p27 is also found in the tamoxifen, doxorubincin and lapatinib resistant breast cancer cells of GEO database. Conclusion Our results thereby indicate that loss of PCBP1 expression firstly attenuates p27 expression at post-transcriptional level, and subsequently promotes carcinogenesis. PCBP1 could be used as a diagnostic marker to cancer patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0840-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongshun Shi
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Ronghua Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiaomei Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Wenliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Fang Tong
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Li Li
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Zhihong Song
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Changwei Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China. .,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
9
|
He YM, Zhang ZL, Liu QY, Xiao YS, Wei L, Xi C, Nan X. Effect of CLIC1 gene silencing on proliferation, migration, invasion and apoptosis of human gallbladder cancer cells. J Cell Mol Med 2018. [PMID: 29516682 PMCID: PMC5908121 DOI: 10.1111/jcmm.13499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to explore the effects of CLIC1 gene silencing on proliferation, migration, invasion and apoptosis of human gallbladder cancer (GBC). GBC and normal gallbladder tissues were extracted for the detection of mRNA and protein expressions of CLIC1. GBC‐SD and NOZ cells in the logarithmic growth phase were selected to conduct the experiment. Three different siRNA recombined expression vectors were established using CLIC1 as a target at different sites. Reverse transcription quantitative polymerase chain reaction (RT‐qPCR) and Western blotting were, respectively, used to detect the CLIC1 mRNA and protein expressions. MTT assay was performed to detect the cell proliferation. Flow cytometry was applied to measure the cell apoptosis and cell cycle distribution. The variations of cell migration and invasion were evaluated using Transwell assay. GBC tissues showed higher CLIC1 mRNA and protein expressions than normal gallbladder tissues. The CLIC1 mRNA and protein expressions in the CLIC1 siRNA group were significantly lower than those in the NC and blank groups. Compared with the NC and blank groups, the CLIC1 siRNA group showed a significant decrease in cell proliferation but an obvious increase in apoptosis rate in GBC cells. Besides, in the CLIC1 siRNA group, cell percentage in G0/G1 and G2/M phase was gradually increased but decreased in S phases. The migration and invasion abilities in GBC cells were significantly lower than those in the NC and blank groups. Our study demonstrates that CLIC1 gene silencing could promote apoptosis and inhibit proliferation migration and invasion of GBC cells.
Collapse
Affiliation(s)
- Yue-Ming He
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhong-Lin Zhang
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Quan-Yan Liu
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Sha Xiao
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Xi
- College of Life Science, Wuhan University, Wuhan, China
| | - Xiang Nan
- College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Epithelial-to-mesenchymal transition in gallbladder cancer: from clinical evidence to cellular regulatory networks. Cell Death Discov 2017; 3:17069. [PMID: 29188076 PMCID: PMC5702855 DOI: 10.1038/cddiscovery.2017.69] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC), with late diagnosis, rapid disease progression and early metastasis, is a highly aggressive malignant tumor found worldwide. Patients with GBC have poor survival, low curative resection rates and early recurrence. For such a lethal tumor, uncovering the mechanisms and exploring new strategies to prevent tumor progression and metastasis are critically important. Epithelial-to-mesenchymal transition (EMT) has a prominent role in the early steps of tumor progression and metastasis by initiating polarized epithelial cell transition into motile mesenchymal cells. Accumulating evidence suggests that EMT can be modulated by the cooperation of multiple mechanisms affecting common targets. Signaling pathways, transcriptional and post-transcriptional regulation and epigenetic alterations are involved in the stepwise EMT regulatory network in GBC. Loss of epithelial markers, acquisition of mesenchymal markers and dysregulation of EMT-inducing transcription factors (EMT-TFs) have been observed and are associated with the clinicopathology and prognosis of GBC patients. Therefore, EMT may be a detectable and predictable event for predicting GBC progression and metastasis in the clinic. In this review, we will provide an overview of EMT from the clinical evidence to cellular regulatory networks that have been studied thus far in clinical and basic GBC studies.
Collapse
|
11
|
Jiang P, Li Z, Tian F, Li X, Yang J. Fyn/heterogeneous nuclear ribonucleoprotein E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. Int J Oncol 2017; 51:169-183. [PMID: 28560430 PMCID: PMC5467783 DOI: 10.3892/ijo.2017.4018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/18/2017] [Indexed: 01/29/2023] Open
Abstract
Pancreatic cancer is characterized by a dense desmoplastic reaction in which extracellular matrix proteins accumulate and surround tumor cells. Integrins and their related signaling molecules are associated with progression of pancreatic cancer. In the present study, the association between the metastasis of pancreatic cancer and the expression of hnRNP E1 and integrin β1 was evaluated. In vitro and in vivo experiments were designed to study the mechanism underlying the regulation of integrin β1 splicing by the Fyn/hnRNP E1 spliceosome. Expression of hnRNP E1 and integrin β1A were associated with metastasis of pancreatic cancer. Inhibition of Fyn activity upregulated the expression of P21-activated kinase 1 and promoted the phosphorylation and nuclear localization of hnRNP E1, leading to the construction of a spliceosome complex that affected the alterative splicing of integrin β1. In the hnRNP E1 spliceosome complex, hnRNP A1 and serine/arginine-rich splicing factor 1 were responsible for binding to the pre-mRNA of integrin β1. Suppression of Fyn activity and/or overexpression of hnRNP E1 decreased the metastasis of pancreatic cancer cells. In pancreatic cancer, the present study demonstrated a novel mechanism by which Fyn/hnRNP E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. hnRNP E1 and integrin β1A are associated with the metastasis of pancreatic cancer and may be novel molecular targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Peng Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhonghu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Feng Tian
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaowu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
12
|
MicroRNA-490 regulates lung cancer metastasis by targeting poly r(C)-binding protein 1. Tumour Biol 2016; 37:15221-15228. [PMID: 27683057 DOI: 10.1007/s13277-016-5347-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence, it is imperative to determine reliable biomarkers of lung cancer prognosis. MicroRNA-490-3p has been previously reported to be a positive prognostic biomarker for hepatocellular cancer. However, its role in human lung cancer has not yet been elucidated. Here, we report that hsa-miR-490-3p expression is significantly higher in human lung cancer tissue specimens and cell line. Gain- and loss-of-function studies of hsa-miR-490-3p showed that it regulates cell proliferation and is required for induction of in vitro migration and invasion-the latter being a hallmark of epithelial to mesenchymal transition. In situ analysis revealed that hsa-miR-490-3p targets poly r(C)-binding protein 1 (PCBP1), which has been previously shown to be a negative regulator of lung cancer metastasis. Reporter assays confirmed PCBP1 as a bona fide target of miR-490-3p, and metagenomic analysis revealed an inverse relation between expression of miR-490-3p and PCBP1 in metastatic lung cancer patients. In fact, PCBP1 expression, as detected by immunohistochemistry, was undetectable in advanced stages of lung cancer patients' brain and lymph node tissues. Xenograft tail vein colonization assays proved that high expression of miR-490-3p is a prerequisite for metastatic progression of lung cancer. Our results suggest that hsa-miR-490-3p might be a potential biomarker for lung cancer prognosis. In addition, we can also conclude that the lung cancer cells have evolved refractory mechanisms to downregulate the expression of the metastatic inhibitor, PCBP1.
Collapse
|
13
|
Poly r(C) binding protein is post-transcriptionally repressed by MiR-490-3p to potentiate squamous cell carcinoma. Tumour Biol 2016; 37:14773-14778. [DOI: 10.1007/s13277-016-5234-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022] Open
|
14
|
Zhou M, Tong X. Downregulated Poly-C binding protein-1 is a novel predictor associated with poor prognosis in Acute Myeloid Leukemia. Diagn Pathol 2015; 10:147. [PMID: 26293996 PMCID: PMC4546103 DOI: 10.1186/s13000-015-0377-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
Background Depletion of Poly-C binding protein-1(PCBP1) is implicated in various human malignancies. However, the underlying biological effect of PCBP1 in cancers, including acute myeloid leukemia (AML), still remains elusive. The purpose of this study was to examine the expression and clinical outcome of PCBP1in acute myeloid leukemia. Methods Bone marrow fluids of 88 newly diagnosed AML patients were sampled, and the PCBP1 mRNA expression level was evaluated using quantitative RT-PCR. The association between PCBP1 expression and clinicopathological features or the survival status of the patients was assessed by Chi-square test and Kaplan-Meier method. Results Comparing newly diagnosed AML patients to normal healthy donors, PCBP1 expression was significantly decreased in AML patients (P < 0.001). Conversely, PCBP1 expression had accordingly recovered back to normal in patients with complete remission (P < 0.001). Clinical feature analyses showed that PCBP1 expression was negatively correlated with white blood cell count (P = 0.024). In addition, patients with low PCBP1 expression had poor disease-free survival (11.8 % vs. 45.3 %; P = 0.01) and overall survival (18.2 % vs. 42.4 %; P = 0.032), respectively. Conclusions Taken together, our results showed for the first time that expression of PCBP1 was down-regulated in newly diagnosed AML patients and might be an independent prognostic marker in AML and should to be further investigated.
Collapse
Affiliation(s)
- Meifeng Zhou
- Department of Hematology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Xiuzhen Tong
- Department of Hematology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|