1
|
Yan H, Yang W, Yan Y, Liu J, Zhu H, Qu L, Gao Y. Detection of small sequence variations within the goat GHR gene and its effects on growth traits. Anim Biotechnol 2023; 34:4256-4261. [PMID: 36369830 DOI: 10.1080/10495398.2022.2143791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Growth hormone receptor (GHR) gene is considered to be an important candidate gene in growth traits. Therefore, the purpose of this study was to detect whether there were potential indel variations in the GHR gene that were related to the growth traits of the Shaanbei white cashmere goats (SBWC). In this study, genomic DNA from 931 healthy SBWC individuals were used to verify the relationship between the indel of the GHR gene and growth traits. Two indel variants, P49-bp indel in intron 1 and P1410-bp indel in 3'-UTR, were confirmed. Association analyses demonstrated that these two indel polymorphism loci were associated with the chest circumference and chest width of SBWC. Additionally, for the P49-bp and P1410-bp indel loci, the ID and II genotypes were dominant genotypes, respectively. Moreover, the genotypic distributions of these two indel loci in SBWC were significantly different from those in three other Chinese indigenous goat breeds (HNBG, GZDG and IMWC) (p < 0.05). Taken together, two indel loci (P49-bp indel and P1410-bp indel) both significantly affected the growth traits of goats. This illustrated that these two indel loci might be the potential DNA marker for use in improving the selection and breeding of goats.
Collapse
Affiliation(s)
- Hailong Yan
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | - Wenjing Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Yan
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | - Jinwang Liu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Ye Gao
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| |
Collapse
|
2
|
PAWAR VIKRANT, SAWANE MAHADEO, ZUNJARRAO KALPESH, DOIPHODE AAKASH. Characterization of third exonic region of POU1F1 gene in the Osmanabadi breed of goat. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i2.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The POU1F1 gene has been identified as one of the major gene for productivity, and its polymorphism is known to be associated with important production traits of various livestock. The present study was designed to investigate POU1F1 (exon-3) gene polymorphism and its association with body weight in Osmanabadi goat (n=217). The PCRSSCP and DNA sequencing revealed single ‘C’ > ‘T’ transition at nucleotide position 42 in the third exonic region (225 bp) POU1F1 gene of Osmanabadi goat. Genotyping revealed ‘TT’ and ‘CC’ genotypes with predominance of ‘C’ allele in the Osmanabadi goat population. Though no association between the said SNP and body weight was observed, these findings can be extended to find the genetic variability of POU1F1 gene associated with growth traits of various Indian goat breeds.
Collapse
|
3
|
Zlobin A, Volkova N, Borodin P, Aksenovich T, Tsepilov Y. Recent advances in understanding genetic variants associated with growth, carcass and meat productivity traits in sheep ( Ovis aries): an update. Arch Anim Breed 2019; 62:579-583. [PMID: 31893215 PMCID: PMC6904904 DOI: 10.5194/aab-62-579-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 09/17/2019] [Indexed: 12/17/2022] Open
Abstract
Identification of quantitative trait loci (QTLs) and candidate genes that affect growth intensity is a prerequisite for the marker-assisted selection of economically important traits. The number of QTL studies on sheep is relatively small in comparison to those on cattle and pigs. The current QTL sheep database - Sheep QTLdb - contains information on 1658 QTLs for 225 different traits. A few genes and markers associated with growth, carcass and meat productivity traits have been reported. The information about QTLs from the Sheep QTLdb cannot be directly used in marker-assisted selection due to the lack of essential information such as effective and reference alleles, the effect direction etc., and it requires manual curation and validation. In this study we performed a comprehensive search for QTLs focusing on single nucleotide polymorphisms (SNPs) associated with growth and meat traits in sheep. The database contains information about 156 SNP-trait associations (123 unique SNPs) and a list of 165 associated genes. The updated information is freely available at https://github.com/Defrag1236/Ovines_2018 (last access: 18 September 2019). This information can be useful for further association studies and preliminary estimation of genetic variability for economically important traits in different breeds.
Collapse
Affiliation(s)
- Alexander S. Zlobin
- Institute of Cytology and Genetics, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, Russia
| | - Natalia A. Volkova
- L. K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy,
Moscow Region, Russia
| | - Pavel M. Borodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, Russia
- L. K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy,
Moscow Region, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tatiana I. Aksenovich
- Institute of Cytology and Genetics, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, Russia
- L. K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy,
Moscow Region, Russia
| | - Yakov A. Tsepilov
- Institute of Cytology and Genetics, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, Russia
- L. K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy,
Moscow Region, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
Işık R, Bilgen G. Associations between genetic variants of the POU1F1 gene and production traits in Saanen goats. Arch Anim Breed 2019; 62:249-255. [PMID: 31807635 PMCID: PMC6852870 DOI: 10.5194/aab-62-249-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/27/2019] [Indexed: 12/02/2022] Open
Abstract
This study was conducted to determine the polymorphisms of the POU1F1 gene and their relationships with milk yield and components, litter size, birth weight, and weaning weight in goats. For this purpose, a total of 108 Saanen goats from two different farms (Bornova and Manisa) were used as animal materials. Polymorphisms at the exon 6 and the 3' flanking region of the POU1F1 gene were determined by using PCR-RFLP with PstI and AluI restriction enzymes and DNA sequencing analyses. Two alleles and three genotypes were identified by AluI or PstI digestions of the POU1F1 gene. The genotypes frequencies of TT, TC, and CC were 64.8 %, 31.5 % and 3.7 % for the PstI locus; 54.6 %, 31.5 % and 13.9 % for the AluI locus, respectively. T allele frequencies (0.56 and 0.88 for the AluI locus, 0.80 and 0.81 for the PstI locus, respectively) were predominant in both loci at the Bornova and Manisa farms. In terms of POU1F1-AluI and POU1F1-PstI loci, two populations were found to be in Hardy-Weinberg equilibrium. In the POU1F1-AluI locus, significant associations were found between genotypes and lactation milk yield and litter size. Similarly, a significant relationship between genotypes and birth weight in the POU1F1-PstI locus ( p < 0.05 ) was determined. The TC and CC genotypes were observed to be higher than the TT genotype for lactation milk yield and litter size at the POU1F1-AluI locus. Birth weight was found to be higher in animals that have the CC genotype at the POU1F1-PstI locus. In conclusion, the POU1F1 gene can be used as a molecular marker for economic features like reproduction, growth, milk content and yield in Saanen goats.
Collapse
Affiliation(s)
- Raziye Işık
- Faculty of Agriculture, Department of
Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Güldehen Bilgen
- Faculty of Agriculture, Department of Animal Science, Ege University, İzmir, Turkey
| |
Collapse
|
5
|
Zhu H, Zhang Y, Bai Y, Yang H, Yan H, Liu J, Shi L, Song X, Li L, Dong S, Pan C, Lan X, Qu L. Relationship between SNPs of POU1F1 Gene and Litter Size and Growth Traits in Shaanbei White Cashmere Goats. Animals (Basel) 2019; 9:ani9030114. [PMID: 30934610 PMCID: PMC6466355 DOI: 10.3390/ani9030114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
POU (Pit-Oct-Unc) class 1 homeobox 1 (POU1F1, or Pit-1) is a transcription factor that directly regulates pituitary hormone-related genes, as well as affects the reproduction and growth in mammals. Thus, POU1F1 gene was investigated as a candidate gene for litter size and growth performance in goats. In the current study, using direct DNA sequencing, c.682G > T, c.723T > G and c.837T > C loci were genotyped in Shaanbei white cashmere (SBWC) goats (n = 609), but c.876 + 110T > C was monomorphic. Besides, the c.682G > T locus was first identified by HinfI (Haemophilus influenzae Rf) restriction endonuclease. Association analysis results showed that the c.682G > T, c.837T > C loci and diplotypes were significantly associated with goat litter size (p < 0.05). The positive genotypes were GT and TT for the two SNPs, respectively, and the optimal diplotype was H3H7 (GTTT-TTTT). On the other hand, the c.682G > T, c.723T > G and c.837T > C strongly affected growth traits and body measurement indexes in SBWC goats (p < 0.05). The positive genotypes or allele of these SNPs were GT, G and TT, respectively. Additionally, the goats with H3H7 diplotype also had a greater growth status than others (p < 0.05). Here, individuals with same genotype had both a better litter size and growth traits, showing a positive correlation between these economic traits. Meanwhile, the positive genotypes of four SNPs were combined to obtain the optimal diplotype, which was also H3H7. These SNPs, especially the diplotype, could be used for the genomic selection of excellent individuals with a greater litter size and better growth status in goat breeding.
Collapse
Affiliation(s)
- Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Yanghai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yangyang Bai
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Han Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hailong Yan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Jinwang Liu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Lei Shi
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Longping Li
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Shuwei Dong
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| |
Collapse
|