1
|
Matsumoto S, Uehara S, Kamimura H, Ikeda H, Maeda S, Hattori M, Nishiwaki M, Kato K, Yamazaki H. Human total clearance values and volumes of distribution of typical human cytochrome P450 2C9/19 substrates predicted by single-species allometric scaling using pharmacokinetic data sets from common marmosets genotyped for P450 2C19. Xenobiotica 2021; 51:479-493. [PMID: 33455494 DOI: 10.1080/00498254.2020.1871113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Common marmosets (Callithrix jacchus) are small non-human primates that genetically lack cytochrome P450 2C9 (CYP2C9). Polymorphic marmoset CYP2C19 compensates by mediating oxidations of typical human CYP2C9/19 substrates.Twenty-four probe substrates were intravenously administered in combinations to marmosets assigned to extensive or poor metaboliser (PM) groups by CYP2C19 genotyping. Eliminations from plasma of cilomilast, phenytoin, repaglinide, tolbutamide, and S-warfarin in the CYP2C19 PM group were significantly slow; these drugs are known substrates of human CYP2C8/9/19.Human total clearance values and volumes of distribution of the 24 test compounds were extrapolated using single-species allometric scaling with experimental data from marmosets and found to be mostly comparable with the reported values.Human total clearance values and volumes of distribution of 15 of the 24 test compounds similarly extrapolated using reported data sets from cynomolgus or rhesus monkeys were comparable to the present predicted results, especially to those based on data from PM marmosets.These results suggest that single-species allometric scaling using marmosets, being small, has advantages over multiple-species-based allometry and could be applicable for pharmacokinetic predictions at the discovery stage of drug development.
Collapse
Affiliation(s)
- Shogo Matsumoto
- Pharmaceutical Research Labs., Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| | - Shotaro Uehara
- Central Institute for Experimental Animals, Kawasaki, Japan.,Pharmaceutical University, Machida, Tokyo, Japan
| | - Hidetaka Kamimura
- Central Institute for Experimental Animals, Kawasaki, Japan.,Business Promotion Dept., CLEA Japan, Inc., Tokyo, Japan
| | - Hiroshi Ikeda
- Tokyo Animal & Diet Dept., CLEA Japan, Inc., Tokyo, Japan
| | - Satoshi Maeda
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | | | - Megumi Nishiwaki
- Fuji Technical Service Center, CLEA Japan, Inc.., Shizuoka, Japan
| | - Kazuhiko Kato
- Pharmaceutical Research Labs., Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| | | |
Collapse
|
2
|
Uno Y, Murayama N, Tamura K, Yamazaki H. Functionally relevant genetic variants of glutathione S-transferase GSTM5 in cynomolgus and rhesus macaques. Xenobiotica 2018; 49:995-1000. [DOI: 10.1080/00498254.2018.1524187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Kazuaki Tamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
3
|
Uno Y, Uehara S, Murayama N, Yamazaki H. Cytochrome P450 1A1, 2C9, 2C19, and 3A4 Polymorphisms Account for Interindividual Variability of Toxicological Drug Metabolism in Cynomolgus Macaques. Chem Res Toxicol 2018; 31:1373-1381. [PMID: 30412386 DOI: 10.1021/acs.chemrestox.8b00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cytochromes P450 (P450s) and their genetic variants in humans are important drug-metabolizing enzymes partly accounting for interindividual variations in drug metabolism and toxicity. However, these genetic variants in P450s have not been fully investigated in cynomolgus macaques, a nonhuman primate species widely used in toxicological studies. In this study, genetic variants found in cynomolgus CYP1A1, CYP2C9 (formerly CYP2C43), CYP2C19 (CYP2C75), and CYP3A4 (CYP3A8) were assessed on functional importance. Resequencing of CYP1A1 in cynomolgus macaques found 18 nonsynonymous variants, of which M121I and V382I were located in SRSs, domains potentially important for P450 function. By further analyzing these two variants, V382I was significantly associated with lower drug-metabolizing activities in the liver for the heterozygotes than the wild types. Similarly, the heterozygotes or homozygotes of CYP2C9 variants (A82V and H344R) and CYP2C19 variant (A490V) showed significantly lower drug-metabolizing activities in the liver than the wild types. Moreover, the homozygotes of CYP3A4 variant (S437N) showed significantly higher activities than the wild type in the liver. Kinetic analyses using recombinant proteins revealed that CYP2C9 variants (A82V and H344R) showed substantially lower Ks values than the wild type, although CYP1A1 variant (V382I) showed kinetic parameters similar to the wild type. Likewise, CYP2C19 variant (A490V) showed substantially a lower Vmax/ Km value than the wild type, whereas CYP3A4 variant (S437N) showed a higher Vmax/ Km value than the wild type. These results suggest the toxicologically functional importance of CYP2C9 variants (A82V and H344R), CYP2C19 variant (A490V), and CYP3A4 variant (S437N) for hepatic drug metabolism in cynomolgus macaques.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd., Kainan , Wakayama 642-0017 , Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| |
Collapse
|
4
|
Uno Y, Murayama N, Yamazaki H. Molecular and Functional Characterization of N-Acetyltransferases NAT1 and NAT2 in Cynomolgus Macaque. Chem Res Toxicol 2018; 31:1269-1276. [PMID: 30358977 DOI: 10.1021/acs.chemrestox.8b00236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arylamine N-acetyltransferases (NATs) are drug-metabolizing enzymes essential for the metabolism of endogenous substrates and xenobiotics, and their molecular characteristics have been extensively investigated in humans, but not in cynomolgus macaques, nonhuman primate species important for drug metabolism studies. In this study, cynomolgus NAT1 and NAT2 cDNAs were isolated from livers. NAT1 and NAT2 were characterized by molecular analyses and drug-metabolizing assays. A total of 9 transcript variants were found for cynomolgus NAT1, similar to human NAT1, and contained 1-4 exons with the coding region largely conserved with human NAT1. Genomic organization was similar between cynomolgus macaques and humans. Cynomolgus NAT1 and NAT2 amino acid sequences showed high sequence homology (95% and 89%, respectively) and showed close relationships with human NAT1 and NAT2 in a phylogenetic tree. Cynomolgus NAT2 mRNA was predominantly expressed in liver among the 10 different tissues analyzed, followed by kidney and jejunum. In contrast, cynomolgus NAT1 mRNA showed more ubiquitous expression with relatively more abundant expression in liver, kidney, and jejunum, along with testis. Metabolic assays using recombinant proteins showed that cynomolgus NAT1 and NAT2 metabolized human NAT substrates, including p-aminobenzoic acid, sulfamethazine, isoniazid, and 2-aminofluorene. Interestingly, p-aminobenzoic acid and isoniazid were largely metabolized by NAT1 and NAT2, respectively, in cynomolgus macaques and humans; sulfamethazine, a human NAT2 substrate, was metabolized by both NAT enzymes in cynomolgus macaques. These results suggest molecular and enzymatic similarities of NAT1 and NAT2 between cynomolgus macaques and humans, despite some small differences in substrate specificity of the enzymes.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd. , Kainan 642-0017 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-0042 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-0042 , Japan
| |
Collapse
|
5
|
Uno Y, Murayama N, Kato M, Tanaka S, Ohkoshi T, Yamazaki H. Genetic Variants of Glutathione S-Transferase GSTT1 and GSTT2 in Cynomolgus Macaques: Identification of GSTT Substrates and Functionally Relevant Alleles. Chem Res Toxicol 2018; 31:1086-1091. [PMID: 30169019 DOI: 10.1021/acs.chemrestox.8b00198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glutathione S-transferase (GST) is a family of important drug-metabolizing enzymes, conjugating endogenous and exogenous compounds. Genetic polymorphisms result in the inter-individual variability of GST activity in humans. Especially, human GSTT1 and GSTT2 null alleles are associated with toxicity and various cancers derived from chemicals. Cynomolgus macaque, a nonhuman primate species widely used in drug metabolism studies, has molecular and enzymatic similarities of GSTs to the human orthologs; however, genetic polymorphisms have not been investigated in this species. In this study, resequencing of GSTT1 and GSTT2 in 64 cynomolgus and 32 rhesus macaques found 15 nonsynonymous variants and 1 nonsense variant for GSTT1 and 15 nonsynonymous variants for GSTT2. Some of these GSTT variants were distributed differently in Indochinese and Indonesian cynomolgus macaques and rhesus macaques. For analysis of functional relevance of the GSTT variants, 1-iodohexane and dibromomethane were determined to be suitable substrates for cynomolgus GSTT1 and GSTT2. However, the conjugation activities were roughly correlated with GSTT protein levels immunochemically quantified in cynomolgus liver samples with no statistical significances, implying the contributions of the GST genetic variants. Among the GSTT1 variants identified, the animals carrying R76C and D125G mutations showed lower conjugation activities toward dibromomethane than those of the wild-type in liver cytosolic fractions. Moreover, the recombinant R76C/D125G and D125G GSTT variant proteins showed significantly lower 1-iodohexane or dibromomethane conjugation activities than those of the wild-type protein. Therefore, inter-animal variability of GSTT-dependent drug metabolism is at least partly accounted for by GSTT1 and possibly GSTT2 variants in cynomolgus and rhesus macaques.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd. , 16-1 Minami Akasaka , Kainan 642-0017 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Masami Kato
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Saki Tanaka
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Tomoko Ohkoshi
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| |
Collapse
|
6
|
Uno Y, Uehara S, Yamazaki H. Genetic polymorphisms of drug-metabolizing cytochrome P450 enzymes in cynomolgus and rhesus monkeys and common marmosets in preclinical studies for humans. Biochem Pharmacol 2018; 153:184-195. [DOI: 10.1016/j.bcp.2017.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
7
|
Uno Y, Igawa Y, Tanaka M, Ohura K, Hosokawa M, Imai T. Analysis of carboxylesterase 2 transcript variants in cynomolgus macaque liver. Xenobiotica 2018; 49:247-255. [DOI: 10.1080/00498254.2018.1435927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd, Kainan, Japan
| | - Yoshiyuki Igawa
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, Shinagawa, Japan
| | - Maori Tanaka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Ohura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masakiyo Hosokawa
- Laboratory of Drug Metabolism and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Japan
| | - Teruko Imai
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Iwasaki K, Kitsugi Y, Ikeda K, Yoshikawa T, Hosaka S, Uehara S, Uno Y, Utoh M, Yamazaki H. In vivo individual variations in pharmacokinetics of efavirenz in cynomolgus monkeys genotyped for cytochrome P450 2C9. Biopharm Drug Dispos 2017; 37:379-83. [PMID: 27417918 DOI: 10.1002/bdd.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/14/2016] [Accepted: 07/05/2016] [Indexed: 11/10/2022]
Abstract
Cynomolgus monkeys are used frequently in preclinical studies for new drug development due to their evolutionary closeness to humans. An antiretroviral drug, efavirenz, is a typical probe substrate for human cytochrome P450 (P450) 2B6, but is mainly metabolized by cynomolgus monkey P450 2C9. In this study, plasma concentrations of efavirenz were assessed in six cynomolgus monkeys genotyped for P450 2C9 c.334 A > C (I112L) (three wild-type, one heterozygote and two homozygotes) by high performance liquid chromatography with tandem mass spectrometry. After intravenous administration at a dose of 1.0 mg/kg, biphasic plasma elimination curves of efavirenz were seen in these cynomolgus monkeys. The mean plasma concentration of the primary metabolite 8-hydroxyefavirenz (1 h after treatment, with hydrolysis by β-glucuronidase) in the wild-type group was significantly higher (4.0-fold) than the combined heterozygous and homozygous group mean. The area under the plasma concentration-time curve value of efavirenz in the homozygous group after oral administration at a dose of 2.0 mg/kg was significantly higher (2.0-fold) than the combined wild-type and heterozygous group. These results collectively indicated that P450 2C9 c.334 A > C (I112L) variation was associated with efavirenz metabolic clearance in vivo. Cynomolgus P450 2C9 polymorphism might account for interindividual variations of efavirenz metabolism in cynomolgus monkeys. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kazuhide Iwasaki
- Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan
| | - Yusuke Kitsugi
- Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan
| | - Kanami Ikeda
- Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan
| | - Takahiro Yoshikawa
- Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan
| | - Shinya Hosaka
- Showa Pharmaceutical University, Machida Tokyo, 194-8543, Japan
| | - Shotaro Uehara
- Showa Pharmaceutical University, Machida Tokyo, 194-8543, Japan
| | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan
| | - Masahiro Utoh
- Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida Tokyo, 194-8543, Japan.
| |
Collapse
|
9
|
Uehara S, Uno Y, Inoue T, Kawano M, Shimizu M, Toda A, Utoh M, Sasaki E, Yamazaki H. Individual Differences in Metabolic Clearance of S-Warfarin Efficiently Mediated by Polymorphic Marmoset Cytochrome P450 2C19 in Livers. Drug Metab Dispos 2016; 44:911-5. [DOI: 10.1124/dmd.116.070383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/19/2016] [Indexed: 11/22/2022] Open
|