1
|
Zhaogao L, Yaxuan W, Mengwei X, Haiyu L, Lin L, Delin X. Molecular mechanism overview of metabolite biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108125. [PMID: 37883919 DOI: 10.1016/j.plaphy.2023.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Medicinal plants are essential and rich resources for plant-based medicines and new drugs. Increasing attentions are paid to the secondary metabolites of medicinal plants due to their unique biological activity, pharmacological action, and high utilization value. However, the development of medicinal plants is constrained by limited natural resources and an unclear understanding of the mechanisms underlying active medicinal ingredients, thereby rendering the utilization and exploration of secondary metabolites more challenging. Besides, with the advancement of research on biosynthesis and molecular metabolism of natural products from medicinal plants, the methods for studying the biological activity and pharmacological effects of these products are constantly evolving. In recent years, significant progress has been made in the biosynthetic pathways and related regulatory genes of secondary metabolites in medicinal plants, which has greatly advanced both basic research and the development of clinical applications for medicinal plants. In this review, we discuss the past two decades of international research on the development of medicinal plant resources, mainly focusing on the biosynthetic pathway of secondary metabolites, intracellular signal transduction processes, multi-omics applications, and the application of gene editing technology in related research progress. We also discuss future development trends to promote the deep mining and development of natural products from medicinal plants, providing a useful reference.
Collapse
Affiliation(s)
- Li Zhaogao
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Wang Yaxuan
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Xu Mengwei
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Liu Haiyu
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Li Lin
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Xu Delin
- Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| |
Collapse
|
2
|
Liu X, Cao J, Cheng X, Zhu W, Sun Y, Wan X, Liu L. CsRVE1 promotes seasonal greening of albino Camellia sinensis cv. Huangkui by activating chlorophyll biosynthesis. TREE PHYSIOLOGY 2023; 43:1432-1443. [PMID: 37083709 DOI: 10.1093/treephys/tpad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Seasonal greening is a crucial survival strategy for albino tea cultivars, during which dysfunctional chloroplasts recover and chlorophyll biosynthesis increases in albino leaves. However, the regulatory mechanisms of seasonal greening in albino tea plants remain unclear. Here, we report that CsRVE1, a nuclear-located Myb-like transcription factor, can positively modulate the seasonal greening of albino Camellia sinensis cv. Huangkui leaves by activating the expression of genes involved in light harvesting and chlorophyll biosynthesis. The transcriptional expression of CsRVE1 increased during seasonal greening and was tightly correlated with increases in the expression of genes involved in light harvesting (CsLhcb) and chlorophyll biosynthesis (CsCHLH, CsHEMA1 and CsCAO). In vivo and in vitro molecular analyses showed that CsRVE1 can directly bind to the promoters of CsLhcb, CsCHLH and CsPORA, eventually leading to chlorophyll accumulation in tea leaves. Furthermore, transient suppression of CsRVE1 in tea leaves led to a decrease in target gene expression. In contrast, the overexpression of CsRVE1 in Arabidopsis led to chlorophyll increases and the activation of AtLhcb, AtPORA, AtCHLH, etc. These results identify CsRVE1 as an important promoter of seasonal greening that functions by regulating genes involved in chlorophyll biosynthesis in albino tea plants and shed new light on the regulatory mechanisms of leaf phenotypes in plants.
Collapse
Affiliation(s)
- Xuyang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Jingjie Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Xin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Wenfeng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| |
Collapse
|
3
|
Xu C, Li J, Wang H, Liu H, Yu Z, Zhao Z. Whole-Transcriptome Sequencing Reveals a ceRNA Regulatory Network Associated with the Process of Periodic Albinism under Low Temperature in Baiye No. 1 ( Camellia sinensis). Int J Mol Sci 2023; 24:ijms24087162. [PMID: 37108322 PMCID: PMC10138444 DOI: 10.3390/ijms24087162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The young shoots of the tea plant Baiye No. 1 display an albino phenotype in the early spring under low environmental temperatures, and the leaves re-green like those of common tea cultivars during the warm season. Periodic albinism is precisely regulated by a complex gene network that leads to metabolic differences and enhances the nutritional value of tea leaves. Here, we identified messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) to construct competing endogenous RNA (ceRNA) regulatory networks. We performed whole-transcriptome sequencing of 12 samples from four periods (Bud, leaves not expanded; Alb, albino leaves; Med, re-greening leaves; and Gre, green leaves) and identified a total of 6325 differentially expressed mRNAs (DEmRNAs), 667 differentially expressed miRNAs (DEmiRNAs), 1702 differentially expressed lncRNAs (DElncRNAs), and 122 differentially expressed circRNAs (DEcircRNAs). Furthermore, we constructed ceRNA networks on the basis of co-differential expression analyses which comprised 112, 35, 38, and 15 DEmRNAs, DEmiRNAs, DElncRNAs, and DEcircRNAs, respectively. Based on the regulatory networks, we identified important genes and their interactions with lncRNAs, circRNAs, and miRNAs during periodic albinism, including the ceRNA regulatory network centered on miR5021x, the GAMYB-miR159-lncRNA regulatory network, and the NAC035-miR319x-circRNA regulatory network. These regulatory networks might be involved in the response to cold stress, photosynthesis, chlorophyll synthesis, amino acid synthesis, and flavonoid accumulation. Our findings provide novel insights into ceRNA regulatory mechanisms involved in Baiye No. 1 during periodic albinism and will aid future studies of the molecular mechanisms underlying albinism mutants.
Collapse
Affiliation(s)
- Cunbin Xu
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Jinling Li
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Hualei Wang
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Huijuan Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Zhihai Yu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Chen X, Yu H, Zhu J, Chen Y, Fu Z, Zhao Y, Yu Y, Chen X, Li X, Ma Q. Widely targeted metabolomic analyses of albino tea germplasm ‘Huabai 1’ and ‘Baiye 1’. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1933613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xuefei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Hanpu Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jin Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yu Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhilu Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yuxin Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Ying Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Qingping Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, People’s Republic of China
- College of Agronomy, Liaocheng University, Liaocheng, People’s Republic of China
| |
Collapse
|
5
|
Ren T, Zheng P, Zhang K, Liao J, Xiong F, Shen Q, Ma Y, Fang W, Zhu X. Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:363-371. [PMID: 33434784 DOI: 10.1016/j.plaphy.2021.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyphenols are important active components in tea plants, which have strong biological activity and antioxidant activity. A certain degree of stress or exogenous substances can significantly increase the content of polyphenols in plants. γ-Aminobutyric acid (GABA), a natural functional amino acid, was used to study whether exogenous GABA can increase the content of polyphenols and enhance antioxidant activity in tea plants under heat-stress conditions. The results showed that the content of GABA was positively correlated with the content of polyphenols (r = 0.649), especially with the content of total catechins (r = 0.837). Most of the related genes encoding flavonoid metabolism (PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, F3'5'H, DFR, LAR, ANS, ANR and FLS) as well as enzyme activities (PAL, C4H and 4CL) were upregulated. In addition, the activities of antioxidant enzymes were induced under heat-stress conditions. However, 3-mercaptopropionic acid (3-MPA), an inhibitor of GABA synthesis, exhibited opposite results under heat-stress conditions compared with GABA treatment. These results indicated that GABA plays a key role in the accumulation of polyphenols and the upregulation of the antioxidant system in tea plants under heat-stress conditions.
Collapse
Affiliation(s)
- Taiyu Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jieren Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Shen
- Institute of Tea Sciences, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 417100, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Sun J, Tian Y, Wu X, Dai C, Lu B. Nondestructive detection for moisture content in green tea based on dielectric properties and VISSA‐GWO‐SVR algorithm. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jun Sun
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Yan Tian
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
- School of Electronic Information Jiangsu University of Science and Technology Zhenjiang China
| | - Xiaohong Wu
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Chunxia Dai
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Bing Lu
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
7
|
Hao X, Zhang W, Liu Y, Zhang H, Ren H, Chen Y, Wang L, Zeng J, Yang Y, Wang X. Pale green mutant analyses reveal the importance of CsGLKs in chloroplast developmental regulation and their effects on flavonoid biosynthesis in tea plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:392-402. [PMID: 31794899 DOI: 10.1016/j.plaphy.2019.11.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 05/18/2023]
Abstract
Tea cultivars with leaf color variation have attracted increasing attention in tea production and research due to their unusual appearances and appealing flavors. However, the molecular mechanism underlying this variation is little known due to the unavailability of genetic transformation and a highly complex genome. Here, a natural tea plant mutant producing pale green branches (pgb) was discovered and characterized. Ultrastructural and biochemical analyses showed that the leaves of the pgb mutant had defective chloroplast structure and significantly lower pigment content than the normal control. Comprehensive expression detection of chloroplast-development-related genes further indicated that a significant downregulation of CsGLKs in the pgb mutant likely caused the chloroplast defect. Transcriptome analyses and polyphenolic compound determination highlighted a tight correlation between photosynthesis and secondary metabolite biosynthesis in tea plant. These results provide useful information illuminating the mechanism of chloroplast development and leaf color variation in tea plant.
Collapse
Affiliation(s)
- Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Weifu Zhang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Ying Liu
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Haojie Zhang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Hengze Ren
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Yao Chen
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Yajun Yang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| | - Xinchao Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|
8
|
Li NN, Lu JL, Li QS, Zheng XQ, Wang XC, Wang L, Wang YC, Ding CQ, Liang YR, Yang YJ. Dissection of Chemical Composition and Associated Gene Expression in the Pigment-Deficient Tea Cultivar 'Xiaoxueya' Reveals an Albino Phenotype and Metabolite Formation. FRONTIERS IN PLANT SCIENCE 2019; 10:1543. [PMID: 31827483 PMCID: PMC6890721 DOI: 10.3389/fpls.2019.01543] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/05/2019] [Indexed: 05/08/2023]
Abstract
The tea cultivar 'Xiaoxueya', a temperature-sensitive albino mutant, is a rare tea germplasm because of its highly enriched amino acid content and brisk flavour. In comparison with green leaf tissues of 'Xiaoxueya', albino leaves show significant deficiency in chlorophylls and carotenoids and severely disrupted chloroplasts. Furthermore, the accumulation of quality-related secondary metabolites is altered in 'Xiaoxueya' albino leaf, with significantly increased contents of total amino acids, theanine, and glutamic acid and significantly decreased contents of alkaloids, catechins, and polyphenols. To uncover the molecular mechanisms underlying albinism and quality-related constituent variation in 'Xiaoxueya' leaves, expression profiles of pivotal genes involved in the biosynthetic pathways of pigments, caffeine, theanine, and catechins were investigated by quantitative real-time PCR technology. The results revealed that suppressed expression of the chloroplast-localized 1-deoxy-D-xylulose-5-phosphate synthase genes DXS1 and DXS2 involved in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway and protochlorophyllide oxidoreductase genes POR1 and POR2 involved in the chlorophyll biosynthetic pathway is responsible for the pigment deficiency in 'Xiaoxueya' albino leaf. Additionally, the low expression of the tea caffeine synthase gene (TCS) involved in caffeine biosynthesis and the chalcone synthase genes CHS1, CHS2, and CHS3, the chalcone isomerase gene CHI, the flavonoid 3',5'-hydroxylase genes F3'5'H1 and F3'5'H2, and the anthocyanidin reductase genes ANR1 and ANR2 involved in the flavonoid pathway is related to the reduction in alkaloid and catechin levels in 'Xiaoxueya' albino leaves.
Collapse
Affiliation(s)
- Na-Na Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xin-Chao Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yu-Chun Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chang-Qing Ding
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
- *Correspondence: Yue-Rong Liang, ; Ya-Jun Yang,
| | - Ya-Jun Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yue-Rong Liang, ; Ya-Jun Yang,
| |
Collapse
|
9
|
Wang ML, Li QH, Xin HH, Chen X, Zhu XJ, Li XH. Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses. PLoS One 2017; 12:e0175863. [PMID: 28453515 PMCID: PMC5409199 DOI: 10.1371/journal.pone.0175863] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/31/2017] [Indexed: 02/01/2023] Open
Abstract
Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world. Exposure to excessive amounts of heavy metals adversely affects the quality and yield of tea leaves. To analyze the molecular responses of tea plants to heavy metals, a reliable quantification of gene expression is important and of major importance herein is the normalization of the measured expression levels for the target genes. Ideally, stably expressed reference genes should be evaluated in all experimental systems. In this study, 12 candidate reference genes (i.e., 18S rRNA, Actin, CYP, EF-1α, eIF-4α, GAPDH, MON1, PP2AA3, TBP, TIP41, TUA, and UBC) were cloned from tea plants, and the stability of their expression was examined systematically in 60 samples exposed to diverse heavy metals (i.e., manganese, aluminum, copper, iron, and zinc). Three Excel-based algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of these genes. PP2AA3 and 18S rRNA were the most stably expressed genes, even though their expression profiles exhibited some variability. Moreover, commonly used reference genes (i.e., GAPDH and TBP) were the least appropriate reference genes for most samples. To further validate the suitability of the analyzed reference genes, the expression level of a phytochelatin synthase gene (i.e., CsPCS1) was determined using the putative reference genes for data normalizations. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in tea plants.
Collapse
Affiliation(s)
- Ming-Le Wang
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Qing-Hui Li
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Hua-Hong Xin
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xuan Chen
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xu-Jun Zhu
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xing-Hui Li
- Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|