1
|
Zhang Y, Zhang J, Li D, Sun H, Lu R, Yin S, Guo X, Gao S. Aldehyde oxidases mediate plant toxicant susceptibility and fecundity in the red flour beetle, Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:656-666. [PMID: 35168693 DOI: 10.1017/s0007485322000049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aldehyde oxidases (AOXs) are a group of metabolic enzymes that play critical roles in the degradation of xenobiotics and chemicals. However, the physiological function of this enzyme in insects remains poorly understood. In this study, three TcAOX genes (TcAOX1, TcAOX2, TcAOX3) were identified and characterized from Tribolium castaneum genome. Spatiotemporal expression profiling showed that TcAOX1 expression was most highly expressed at the early pupal stage and was predominantly expressed in the antennae of adults, indicating that TcAOX1 was involved in the degradation of chemical signals; TcAOX2 expression was most highly expressed at the late pupal stage and was mainly expressed in the fat body, epidermis of larvae and adults, respectively; and TcAOX3 expression was in all stages and was primarily expressed in the head of adults. Moreover, the transcripts of TcAOX2 and TcAOX3 were significantly induced after exposure to plant oil, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to this plant toxicant, suggesting that these two genes are associated with plant toxicant detoxification. Intriguingly, knockdown of the TcAOX1 led to reductions in female egg-laying but unchanged the hatchability and the development of genital organs, suggesting that this gene may mediate fecundity by effecting the inactivation of chemical signals in T. castaneum. Overall, these results shed new light on the function of AOX genes in insects, and could facilitate the development of research on pest control management.
Collapse
Affiliation(s)
- Yonglei Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiahao Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Dongyu Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Se Yin
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Xinlong Guo
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
2
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Niemi MS, Aljowaie RM, Almutairi SM, Alexiou A, Batiha GES. The Prospective Effect of Allopurinol on the Oxidative Stress Index and Endothelial Dysfunction in Covid-19. Inflammation 2022; 45:1651-1667. [PMID: 35199285 PMCID: PMC8865950 DOI: 10.1007/s10753-022-01648-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 by the direct cytopathic effect or indirectly through the propagation of pro-inflammatory cytokines could cause endothelial dysfunction (ED) and oxidative stress (OS). It has been reported that OS is triggered by various types of viral infections, including SARS-CoV-2. Into the bargain, allopurinol is regarded as a potent antioxidant that acts through inhibition of xanthine oxidase (XO), which is an essential enzyme of purine metabolism. Herein, the present study aimed to find the potential protective effects of allopurinol on the biomarkers of OS and ED in patients with severe Covid-19. This single-center cohort study recruited 39 patients with mild-moderate Covid-19 compared with 41 patients with severe Covid-19. Nineteen patients with severe Covid-19 were on the allopurinol treatment because of underlying chronic gout 3 years ago compared with 22 Covid-19 patients not on this treatment. The recruited patients were allocated into three groups: group I, mild-moderate Covid-19 on the standard therapy (n = 39); group II, severe Covid-19 patients on the standard therapy only (n = 22); and group III, severe Covid-19 patients on the standard therapy plus allopurinol (n = 19). The duration of the study was 3 weeks from the time of hospitalization till the time of recovery. In addition, inflammatory biomarkers (D-dimer, LDH, ferritin, CRP, procalcitonin), neutrophil-lymphocyte ratio (NLR), endothelin-1 (ET-1), uric acid and oxidative stress index (OSI), CT scan score, and clinical score were evaluated at the time of admission and discharge regarding the effect of allopurinol treatment adds to the standard treatment of Covid-19. Allopurinol plus standard treatment reduced LDH, ferritin, CRP, procalcitonin, and ET-1 serum level significantly (P < 0.05) compared with Covid-19 patients on standard treatment. Besides, neutrophil (%), lymphocyte (%), and neutrophil-lymphocyte ratio (NLR) were reduced in patients with severe Covid-19 on standard treatment plus allopurinol compared with Covid-19 patients on standard treatment alone (P < 0.01). OSI was higher in patients with severe Covid-19 than mild-moderate Covid-19 patients (P = 0.00001) at admission. At the time of discharge, the oxidative status of Covid-19 patients was significantly improved compared with that at admission (P = 0.01). In conclusion, Covid-19 severity is linked with high OS and inflammatory reaction with ED development. High uric acid in patients with severe Covid-19 is correlated with high OS and inflammatory biomarkers. Allopurinol with standard treatment in patients with severe Covid-19 reduced oxidative and inflammatory disorders with significant amelioration of ED and clinical outcomes.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL mustansiriyia University, Bagdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL mustansiriyia University, Bagdad, Iraq
| | - Marwa S Al-Niemi
- Department of Clinical Pharmacy, College of Pharmacy, Al-Farahidi University, Bagdad, Iraq
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
- AFNP Med Austria, Wien, Austria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, 22511, Egypt.
| |
Collapse
|
3
|
Gut AM, Vasiljevic T, Yeager T, Donkor ON. Anti-salmonella properties of kefir yeast isolates : An in vitro screening for potential infection control. Saudi J Biol Sci 2022; 29:550-563. [PMID: 35002451 PMCID: PMC8717153 DOI: 10.1016/j.sjbs.2021.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.
Collapse
Key Words
- AGC, Automatic Gain Control
- ATCC, American type Culture Collection
- ATP, Adenosine triphosphate
- CFS, Cell Free Supernatant
- CFU, Colony Forming Unit
- DNA, Deoxyribonucleic Acid
- DSR, Desk Sputter Coater
- DTT, Dithiothreitol
- FAO, Food Agriculture Organization
- GIT, The gastrointestinal tract
- HCL, Hydrochloric Acid
- HPLC, High-performance liquid chromatography
- IBM, International Business Machines
- KTM, Killer Toxin Cedium
- Kefir
- Kluyveromyces lactis
- LC-MS/MS, Liquid Chromatography with tandem mass spectrometry/Liquid Chromatography with tandem mass spectrometry
- LFQ, Label Free Quantitation
- Min, Minute
- NaOH, Sodium hydroxide
- PBS, Phosphate buffered saline
- Probiotics
- RNA, Ribonucleic Acid
- RSLC, Rapid Separation Liquid Chromatography
- SD, Standard Deviation
- SPSS, Statistical Package for the Social Sciences
- Saccharomyces boulardii
- Saccharomyces unisporus
- Salmonella
- Shotgun proteomics
- WHO, World Health Organization
- YEPDA, Yeast Extract Peptone Dextrose Agar
- YEPDB, Yeast Extract Peptone Dextrose Broth
- Yeasts
- h, Hour
- mL, Milliliter
Collapse
Affiliation(s)
- Abraham Majak Gut
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Todor Vasiljevic
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Thomas Yeager
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,First YearCollege, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Osaana N Donkor
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| |
Collapse
|
4
|
Wan Y, Qian J, Li Y, Shen Y, Chen Y, Fu G, Xie M. Inhibitory mechanism of xanthine oxidase activity by caffeoylquinic acids in vitro. Int J Biol Macromol 2021; 184:843-856. [PMID: 34146563 DOI: 10.1016/j.ijbiomac.2021.06.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/14/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
In this study, the inhibitory activities of eight caffeoylquinic acids (CQAs) against xanthine oxidase (XOD) in vitro were investigated, and the interaction mechanisms between each compound and XOD were studied. HPLC and fluorescence spectra showed that the inhibitory activities of dicaffeoylquinic acids (diCQAs) were higher than that of monocaffeoylquinic acids (monoCQAs), due to the main roles of hydrophobic interaction and hydrogen bond between XOD and diCQAs. Both the binding constant and the lowest binding energy data indicated that the affinities of diCQAs to XOD were stronger than that of monoCQAs. Circular dichroism showed that the structure of XOD was compacted with the increased of α-helix content, resulting in decreased enzyme catalytic activity. Molecular docking revealed that CQAs preferentially bind to the flavin adenine dinucleotide region in XOD. These results provided the mechanisms of CQAs on inhibiting XOD and the further utilization of CQAs as XOD inhibitors to prevent hyperuricemia.
Collapse
Affiliation(s)
- Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jin Qian
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yizhen Li
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuefeng Shen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yanru Chen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|