1
|
Li M, Wang M, Chen J, Wu J, Xia Z. Sulfur dioxide improves the thermotolerance of maize seedlings by regulating salicylic acid biosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114746. [PMID: 36905845 DOI: 10.1016/j.ecoenv.2023.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/14/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Heat stress (HS) has become a serious threat to crop growth and yield. Sulfur dioxide (SO2) is being verified as a signal molecule in regulating the plant stress response. However, it is unknown whether SO2 plays a significant role in the plant heat stress response (HSR). Herein, maize seedlings were pretreated with various concentrations of SO2 and then kept at 45 °C for heat stress treatment, aiming to study the effect of SO2 pretreatment on HSR in maize by phenotypic, physiological, and biochemical analyses. It was found that SO2 pretreatment greatly improved the thermotolerance of maize seedlings. The SO2-pretreated seedlings showed 30-40% lower ROS accumulation and membrane peroxidation, but 55-110% higher activities of antioxidant enzymes than the distilled water-pretreated seedlings under heat stress. Interestingly, endogenous salicylic acid (SA) levels were increased by ∼85% in SO2-pretreated seedlings, as revealed by phytohormone analyses. Furthermore, the SA biosynthesis inhibitor paclobutrazol markedly reduced SA levels and attenuated SO2-triggered thermotolerance of maize seedlings. Meanwhile, transcripts of several SA biosynthesis and signaling, and heat stress-responsive genes in SO2-pretreated seedlings were significantly elevated under HS. These data have demonstrated that SO2 pretreatment increased endogenous SA levels, which activated the antioxidant machinery and strengthened the stress defense system, thereby improving the thermotolerance of maize seedlings under HS. Our current study provides a new strategy for mitigating heat stress damage for safe crop production.
Collapse
Affiliation(s)
- Mengyao Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jiafa Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, PR China; State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou 450002, PR China.
| | - Jianyu Wu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, PR China; State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou 450002, PR China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, PR China; State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou 450002, PR China.
| |
Collapse
|
2
|
Guo J, Wang Z, Qu L, Hu Y, Lu D. Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress. BMC PLANT BIOLOGY 2022; 22:432. [PMID: 36076169 PMCID: PMC9461148 DOI: 10.1186/s12870-022-03822-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/28/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Salicylic acid (SA) is a phytohormone which works to regulate the abiotic stress response of plants. However, the molecular mechanism by which SA mediates heat tolerance in waxy maize (Zea mays L. sinsensis Kulesh) remains unknown. RESULTS Two varieties of waxy maize seedlings, heat-tolerant 'Yunuo7' (Y7) and heat-sensitive 'Suyunuo5' (S5), were pretreated with SA prior to heat stress (HTS). After treatment, physiological and transcriptomic changes were analyzed. Compared with HTS, the exogenous application of SA enhanced the shoot dry weight, the activities of antioxidant enzymes (e.g., SOD, POD, CAT and APX), and the concentration of endogenous phytohormones (e.g., SA, ABA, IAA, GA3), while decreased the MDA content. Transcriptome analysis showed that the number of differentially expressed genes (DEGs) identified in the control (CK) vs HTS and HTS vs HTS + SA comparisons were more in S5 than in Y7. HTS induced the downregulation of genes involved in photosynthesis and the upregulation of genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs). Compared with HTS, SA pretreatment reversed the expression of 5 photosynthesis-related genes, 26 phytohormone-related genes, and all genes encoding HSFs and HSPs in S5. Furthermore, the number of alternative splicing (AS) events increased under HTS treatment for both varieties, while decreased under SA pretreatment of S5. Differentially spliced genes (DSGs) showed little overlap with DEGs, and DEGs and DSGs differed significantly in functional enrichment. CONCLUSIONS Physiological and transcriptional together indicated that HTS and SA pretreatment had a greater effect on S5 than Y7. Additionally, it appears that transcriptional regulation and AS work synergistically to enhance thermotolerance in heat-sensitive waxy maize. Our study revealed the regulatory effects and underlying molecular mechanisms of SA on waxy maize seedling under HTS.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yifan Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
3
|
Mattioli R, Francioso A, Trovato M. Proline Affects Flowering Time in Arabidopsis by Modulating FLC Expression: A Clue of Epigenetic Regulation? PLANTS 2022; 11:plants11182348. [PMID: 36145748 PMCID: PMC9505445 DOI: 10.3390/plants11182348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The recent finding that proline-induced root elongation is mediated by reactive oxygen species (ROS) prompted us to re-evaluate other developmental processes modulated by proline, such as flowering time. By controlling the cellular redox status and the ROS distribution, proline could potentially affect the expression of transcriptional factors subjected to epigenetic regulation, such as FLOWERING LOCUS C (FLC). Accordingly, we investigated the effect of proline on flowering time in more detail by analyzing the relative expression of the main flowering time genes in p5cs1 p5cs2/P5CS2 proline-deficient mutants and found a significant upregulation of FLC expression. Moreover, proline-deficient mutants exhibited an adult vegetative phase shorter than wild-type samples, with a trichome distribution reminiscent of plants with high FLC expression. In addition, the vernalization-induced downregulation of FLC abolished the flowering delay of p5cs1 p5cs2/P5CS2, and mutants homozygous for p5cs1 and flc-7 and heterozygous for P5CS2 flowered as early as the flc-7 parental mutant, indicating that FLC acts downstream of P5CS1/P5CS2 and is necessary for proline-modulated flowering. The overall data indicate that the effects of proline on flowering time are mediated by FLC.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Francioso
- Instituto Universitario de Bio-Orgánica Antonio González, 38200 San Cristóbal de La Laguna, Spain
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-2411
| |
Collapse
|
4
|
Kumari P, Rastogi A, Yadav S. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea. Mol Biol Rep 2020; 47:4659-4670. [PMID: 32133603 DOI: 10.1007/s11033-020-05358-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2019] [Accepted: 02/27/2020] [Indexed: 11/28/2022]
Abstract
Global warming has an adverse impact on agriculture and food security is in doldrums around the world. A sharp increase in the temperature of earth is expected and may lead to ~ 1.8-4 °C rise in average earth temperature by the year 2100. Thus, heat stress is a critical factor for plant growth development and crop yield. Chickpea, which is an important leguminous crop and rich source of proteins is also a heat sensitive crop but high temperature exceeding 35 °C inhibit its productivity. Climate-smart agriculture seems to be a plausible approach to minimize the drastic effect of climate change on plant's adaptation. This may help in better selection of tolerant cultivars of chickpea that can be used in breeding programmes for heat stress tolerance in chickpea. Also the biotechnological approaches using candidate genes expressed in transgenics plants may play pivotal role in the production of climate resilient chickpea plants. Some preliminary findings using CAP2, Galactinol synthase genes, proteomic approaches, RNA seq data, stay green traits and -OMICS in general, have proved to be promising. A close collaboration between agronomists, plant physiologists, geneticists, biotechnologists is the pressing need and must be envisioned in order to address heat stress tolerance in chickpea under the prevailing climatic conditions and continuously increasing temperature. In the context of global heat stress and climate change, adaptation and mitigation are the keywords for employing transdisciplinary methodologies with respect to plant growth, development and agronomy.
Collapse
Affiliation(s)
- Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan, 333515, India. .,Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Science, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University,, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
5
|
Rai KK, Pandey N, Rai SP. Salicylic acid and nitric oxide signaling in plant heat stress. PHYSIOLOGIA PLANTARUM 2020; 168:241-255. [PMID: 30843232 DOI: 10.1111/ppl.12958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/17/2018] [Revised: 02/09/2019] [Accepted: 03/02/2019] [Indexed: 05/28/2023]
Abstract
In agriculture, heat stress (HS) has become one of the eminent abiotic threats to crop growth, productivity and nutritional security because of the continuous increase in global mean temperature. Studies have annotated that the heat stress response (HSR) in plants is highly conserved, involving complex regulatory networks of various signaling and sensor molecules. In this context, the ubiquitous-signaling molecules salicylic acid (SA) and nitric oxide (NO) have diverted the attention of the plant science community because of their putative roles in plant abiotic and biotic stress tolerance. However, their involvement in the transcriptional regulatory networks in plant HS tolerance is still poorly understood. In this review, we have conceptualized current knowledge concerning how SA and NO sense HS in plants and how they trigger the HSR leading to the activation of transcriptional-signaling cascades. Fundamentals of functional components and signaling networks associated with molecular mechanisms involved in SA/NO-mediated HSR in plants have also been discussed. Increasing evidences have suggested the involvement of epigenetic modifications in the development of a 'stress memory', thereby provoking the role of epigenetic mechanisms in the regulation of plant's innate immunity under HS. Thus, we have also explored the recent advancements regarding the biological mechanisms and the underlying significance of epigenetic regulations involved in the activation of HS responsive genes and transcription factors by providing conceptual frameworks for understanding molecular mechanisms behind the 'transcriptional stress memory' as potential memory tools in the regulation of plant HSR.
Collapse
Affiliation(s)
- Krishna K Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Pandey
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, CMP Degree College, University of Allahabad, Prayagraj, India
| | - Shashi P Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
6
|
Rai KK, Rai N, Aamir M, Tripathi D, Rai SP. Interactive role of salicylic acid and nitric oxide on transcriptional reprogramming for high temperature tolerance in lablab purpureus L.: Structural and functional insights using computational approaches. J Biotechnol 2020; 309:113-130. [PMID: 31935417 DOI: 10.1016/j.jbiotec.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Salicylic acid (SA) and nitric oxide (NO) are considered as putative plant growth regulators that are involved in the regulation of an array of plant's growth and developmental functions under environmental fluctuations when applied at lower concentrations. The possible involvement of NO in SA induced attenuation of high temperature (HT) induced oxidative stress in plants is however, still vague and need to be explored. Therefore, the present study aimed to investigates the biochemical and physiological changes induced by foliar spray of SA and NO combinations to ameliorate HT induced oxidative stress in Lablab purpureus L. Foliar application of combined SA and NO significantly improved relative water content (27.8 %), photosynthetic pigment content (67.2 %), membrane stability (45 %), proline content (1.0 %), expression of enzymatic antioxidants (7.1-18 %) along with pod yield (1.0 %). Heat Shock Factors (HSFs) play crucial roles in plants abiotic stress tolerance, however there structural and functional classifications in L. purpureus L. is still unknown. So, In-silico approach was also used for functional characterization and homology modelling of HSFs in L. purpureus. The experimental findings depicted that combine effect of SA and NO enhances tolerance in HT stressed L. purpureus L. plants by regulating physiological functions, antioxidants, expression and regulation of stress-responsive genes via transcriptional regulation of heat shock factor.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India; Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Nagendra Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Mohd Aamir
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Deepika Tripathi
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India.
| |
Collapse
|
7
|
Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay RS. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 2019; 5:e02952. [PMID: 31872123 PMCID: PMC6909094 DOI: 10.1016/j.heliyon.2019.e02952] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
Background In response to various environmental stresses, many plant species synthesize L-proline in the cytosol and accumulates in the chloroplasts. L-Proline accumulation in plants is a well-recognized physiological reaction to osmotic stress prompted by salinity, drought and other abiotic stresses. L-Proline plays several protective functions such as osmoprotectant, stabilizing cellular structures, enzymes, and scavenging reactive oxygen species (ROS), and keeps up redox balance in adverse situations. In addition, ample-studied osmoprotective capacity, L-proline has been also ensnared in the regulation of plant improvement, including flowering, pollen, embryo, and leaf enlargement. Scope and conclusions Albeit, ample is now well-known about L-proline metabolism, but certain characteristics of its biological roles are still indistinct. In the present review, we discuss the L-proline accumulation, metabolism, signaling, transport and regulation in the plants. We also discuss the effects of exogenous L-proline during different environmental conditions. L-Proline biosynthesis and catabolism are controlled by several cellular mechanisms, of which we identify only very fewer mechanisms. So, in the future, there is a requirement to identify such types of cellular mechanisms.
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India.,Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vaishali Shukla
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mukesh Yadav
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - R S Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|