1
|
Mokhberian N, Sharifi K, Soleymaninejadian E, Eftekhary M, Hashemi SM, Farhadi S, Miwa S, Ghanbarian H. RNAa-mediated epigenetic attenuation of the cell senescence via locus specific induction of endogenous SIRT1. Sci Rep 2022; 12:15826. [PMID: 36138054 PMCID: PMC9500079 DOI: 10.1038/s41598-022-17972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 08/03/2022] [Indexed: 01/27/2023] Open
Abstract
SIRT1, a known regulator of cellular senescence, is a therapeutic target for age related disorders and its upregulation is a strategy to improve the cell therapeutic potentials of human mesenchymal stem cell (MSCs). Knockdown of natural antisense transcripts via small activating RNAs (RNAa) is an emerging approach for safe and locus specific gene regulation. We have recently identified a natural antisense transcript at human SIRT1 locus (SIRT1-NAT), the expression of which shows a negative correlation with that of SIRT1. To test the hypothetic upregulation of SIRT1 via knockdown of SIRT1-NAT, in this study we designed a single stranded oligonucleotide (SIRT1-antagoNAT) against the antisense transcript, transfection of which efficiently knocked down the SIRT1-NAT and induced SIRT1 transcription in human MSCs. In addition, activation of SIRT1 transfection via knockdown of SIRT1-NAT in human MSCs enhanced their proliferation and differentiation potentials, reduced senescence associated β-galactosidase activity and reversed the senescence associated molecular alterations. Our findings introduce an RNAa mediated approach for epigenetic induction of endogenous SIRT1 and the consequent attenuation of senescence. Further studies should evaluate the therapeutic potentials of this approach against various age related disorders.
Collapse
Affiliation(s)
- Neda Mokhberian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Soleymaninejadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran.,Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Lombardy, Italy
| | - Mohamad Eftekhary
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Shohreh Farhadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Satomi Miwa
- Biosciences Institute, Edwardson Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran. .,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhao Q, Liu G, Yin X, Fan X, Yang Y. Exploration the potential mechanism of the SIRT1 and its target gene FOXO1/PPARGC1A in uteropelvic junction obstruction. Transl Androl Urol 2022; 10:4192-4205. [PMID: 34984185 PMCID: PMC8661252 DOI: 10.21037/tau-21-752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 11/06/2022] Open
Abstract
Background Uteropelvic junction obstruction (UPJO) is a common surgical condition, which refers to the blockage of urine flowing through kidney into proximal upper ureter. However, the underlying mechanism of UPJO is poorly understood, especially the regulated and targeted genes of sirtuin 1 in UPJO. Methods We sequenced three renal tissues on the obstructed side of independent children with <20% differential renal function (DRF) and three samples with >40% DRF. Gene expression values were obtained and compared for differentially expressed genes (DEGs). Protein-protein interaction (PPI) analysis was conducted to identify the overlapping proteins of DEGs and Sirtuin 1 (SIRT1). The co-expression genes of overlapped genes were computed using Pearson correlation coefficient. The potential role of SIRT1 gene in UPJO was explored by resequencing 3 microarray data from RNA interference (RNAi) SIRT1 lines of renal tubular epithelial (NRK52E) cells in rat and three control datasets were sequenced again. The DEGs were obtained as parallel. GO/KEGG enrichment analysis and co-expression network were conducted to explore the underlying mechanism, particularly shared pathways or function in GO/KEGG enrichment analysis results. Results A total of 427 up-regulated genes and 1,099 down-regulated genes were identified among 3 mRNA-seq of renal tissue on the obstructed side of the independent children with <20% DRF and 3 samples with >40% DRF. According to prediction using the Search Tool for Retrieval of Interacting Genes/Proteins, 2 PPIs, FOXO1 and PPARGC1A, were identified among 2,524 DEGs, predicted as targets of SIRT1. Gene set enrichment analysis (GSEA) of their co-expression genes showed they may co-participate in biological activities including fatty acid degradation, regulation of signal transduction by p53 mediator. Moreover, GSEA results of DEGs was confirmed through RNAi SIRT1 lines of rat renal tubular epithelial (NRK52E) cells. Conclusions UPJO may cause abnormal phenotypic changes of renal tubular epithelial cells through SIRT1/FOXO1 mediated protein transport, establishment of protein localization, and intracellular transport. In addition, UPJO is involved in regulation of signal transduction, regulation of intracellular estrogen receptor signaling pathways, and nucleoprotein localization through SIRT1/PPARGC1A-mediated p53 mediators, causing abnormal phenotypic changes in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ge Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Multi-Systemic Alterations by Chronic Exposure to a Low Dose of Bisphenol A in Drinking Water: Effects on Inflammation and NAD +-Dependent Deacetylase Sirtuin1 in Lactating and Weaned Rats. Int J Mol Sci 2021; 22:ijms22189666. [PMID: 34575829 PMCID: PMC8467074 DOI: 10.3390/ijms22189666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) is largely used as a monomer in some types of plastics. It accumulates in tissues and fluids and is able to bypass the placental barrier, affecting various organs and systems. Due to huge developmental processes, children, foetuses, and neonates could be more sensitive to BPA-induced toxicity. To investigate the multi-systemic effects of chronic exposure to a low BPA dose (100 μg/L), pregnant Wistar rats were exposed to BPA in drinking water during gestation and lactation. At weaning, newborn rats received the same treatments as dams until sex maturation. Free and conjugated BPA levels were measured in plasma and adipose tissue; the size of cerebral ventricles was analysed in the brain; morpho-functional and molecular analyses were carried out in the liver with a focus on the expression of inflammatory cytokines and Sirtuin 1 (Sirt1). Higher BPA levels were found in plasma and adipose tissue from BPA treated pups (17 PND) but not in weaned animals. Lateral cerebral ventricles were significantly enlarged in lactating and weaned BPA-exposed animals. In addition, apart from microvesicular steatosis, liver morphology did not exhibit any statistically significant difference for morphological signs of inflammation, hypertrophy, or macrovesicular steatosis, but the expression of inflammatory cytokines, Sirt1, its natural antisense long non-coding RNA (Sirt1-AS LncRNA) and histone deacetylase 1 (Hdac1) were affected in exposed animals. In conclusion, chronic exposure to a low BPA dose could increase the risk for disease in adult life as a consequence of higher BPA circulating levels and accumulation in adipose tissue during the neonatal period.
Collapse
|
4
|
Mokhberian N, Bolandi Z, Eftekhary M, Hashemi SM, Jajarmi V, Sharifi K, Ghanbarian H. Inhibition of miR-34a reduces cellular senescence in human adipose tissue-derived mesenchymal stem cells through the activation of SIRT1. Life Sci 2020; 257:118055. [PMID: 32634429 DOI: 10.1016/j.lfs.2020.118055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
AIMS Human adipose derived mesenchymal stem cells (hAD-MSCs) as the most promising target for cell therapy and regenerative medicine, face senescence as a major drawback resulting in their limited proliferation and differentiation potentials. To evaluate the efficacy of miR-34a silencing as an anti-senescence strategy in hAD-MSCs, in this study common hallmarks of senescence were assessed after transient inhibition of miR-34a in hAD-MSCs. MATERIALS AND METHODS The expression levels of miR-34a in hAD-MSCs at different passages were evaluated by real-time quantitative PCR. hAD-MSCs at passage 2 and passage 7 were transfected with miR-34a inhibitor. Doubling time assay, colony forming assay, and cell cycle analysis were performed to evaluate cell proliferation rate. The activity of senescence associated β-galactosidase (SA-β-gal) was assessed by histochemical staining. Moreover, the senescence associated molecular alterations including that of pro-senescence (P53, P21 and P16) and anti-senescence (SIRT1, HTERT and CD44) genes were examined by quantitative RT-PCR and western blot assays. To evaluate the differentiation potentials of MSCs, following adipogenic and osteogenic induction, the expression levels of lineage specific markers were analyzed by qPCR. KEY FINDINGS Our results showed that inhibition of miR-34a enhances the proliferation, promotes the adipogenic and osteogenic differentiation potency, reduces the senescence associated-β gal activity, and reverses the senescence associated molecular alterations in hAD-MSCs. SIGNIFICANCE In this study, we showed that inhibition of miR-34a reduces the cellular senescence through the activation of SIRT1. Our findings support the silencing of miR-34a as an anti-senescence approach to improve the therapeutic potentials of hAD-MSCs.
Collapse
Affiliation(s)
- Neda Mokhberian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Bolandi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Eftekhary
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Eftekhary M, Mohammadi-Yeganeh S, Bolandi Z, Hashemi SM, Mokhberian N, Sharifi K, Ghanbarian H. A novel natural antisense transcript at human SOX9 locus is down-regulated in cancer and stem cells. Biotechnol Lett 2019; 42:329-339. [DOI: 10.1007/s10529-019-02774-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
|
6
|
Nan P, Niu Y, Wang X, Li Q. MiR-29a function as tumor suppressor in cervical cancer by targeting SIRT1 and predict patient prognosis. Onco Targets Ther 2019; 12:6917-6925. [PMID: 31692593 PMCID: PMC6717154 DOI: 10.2147/ott.s218043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Cervical cancer is the second most frequently malignant tumors in females and metastasis is a challenge of the treatment of cervical cancer. MiR-29a is usually low expressed in several tumors and its functions in cervical cancer remain unclear. PATIENTS AND METHODS The quantitative real-time polymerase chain reaction was employed to assess the expression of miR-29a and the Sirtuin-1 (SIRT1). Cell metastatic ability was assessed using Transwell and Western blot assays. The dual-luciferase reporter assay was performed to verify that miR-29a targeted to the 3'-untranslated region (UTR) of SIRT1 mRNA. RESULTS MiR-29a was low expressed in cervical cancer and downregulation of miR-29a was associated with poor outcome. MiR-29a regulated the expression of SIRT1 by targeting to its 3'-UTR of mRNA in HeLa cells. SIRT1 was upregulated in cervical cancer tissues and cells in comparison with the non-tumor tissues and normal cells. Upregulation of SIRT1 predicted worse outcome of cervical cancer patients. MiR-29a was participated in the migration, invasion and epithelial-mesenchymal transition (EMT) in cervical cancer through directly targeting to the 3'-UTR of SIRT1 mRNA. SIRT1 reversed partial roles of miR-29a on metastasis in cervical cancer. CONCLUSION miR-29a suppressed migration, invasion and EMT by directly targeting to SIRT1 in cervical cancer. The newly identified miR-29a/SIRT1 axis provides novel insight into the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Ping Nan
- Department of Gynaecology, Shengli Oil Centre Hospital, Dongying, People’s Republic of China
| | - Yugui Niu
- Department of Joint Surgery, Shengli Oil Center Hospital, Dongying, People’s Republic of China
| | - Xiuhua Wang
- Department of Gynecology, Dongying District People’s Hospital, Dongying, People’s Republic of China
| | - Qiang Li
- Department of Gynaecology, Shengli Oil Centre Hospital, Dongying, People’s Republic of China
| |
Collapse
|