1
|
Ma Y, Chu Y, Xu Z, Xie C, Ma X, Zhang L, Hu J, Zou B, Wu H, Zhou G. Ultrafast and Highly Specific Detection of One-Base Mutated Cell-Free DNA at a Very Low Abundance. Anal Chem 2024; 96:117-126. [PMID: 38114445 DOI: 10.1021/acs.analchem.3c03326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Liquid biopsy as well as genotyping plays important roles in guiding the use of tumor-targeted drugs and monitoring the generation of drug resistance. However, current methods, such as next-generation sequencing (NGS) and pyrosequencing, require long analysis time and complicated steps. To achieve ultrafast and highly specific detection of cell-free DNA (cfDNA) from blood, we improved our recently developed FEN1-aided RPA (FARPA), which combined flap endonuclease 1 (FEN1)-catalyzed invasive reactions with recombinase polymerase amplification (RPA) by inactivating the RPA enzymes before invasive reactions, designing short RPA primers, and changing invasive reaction conditions. Using the L858R and T790M mutations as examples, FARPA was sensitive to detect 5 copies of targeted mutants, specific to sense the mutants with an abundance as low as 0.01% from blood, and ultrafast to get results within 40 min. The method was readily expended to genotyping, and 15 min was enough to report the allele species directly from oral swab samples by coupling quick DNA extraction reagents. Validation was carried out by detecting clinical samples, including 20 cfDNA from patients with non-small cell lung cancer (NSCLC) for liquid biopsy and 43 human genomic DNA (gDNA) purified from blood (33) or lysed from oral swabs (10) for genotyping, giving 100% agreement with NGS and pyrosequencing, respectively. Furthermore, a portable battery-driven device with dual-channel fluorescence detection was successfully constructed to facilitate point-of-care testing (POCT) of liquid biopsy and genotyping, providing doctors with a potential tool to achieve genotyping- or mutant-guided personalized medicine at emergency or source-limited regions.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Zhaoluo Xu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Chunmei Xie
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xueping Ma
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Likun Zhang
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Jingjing Hu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Wu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| |
Collapse
|
2
|
Poudel B, Desman J, Aihara G, Weidman DI, Tsang A, Kovrizhkin K, Pereira T, Arun S, Pradeep T, Matin S, Liddell RP. Adequacy of samples obtained via percutaneous core-needle rebiopsy for EGFR T790M molecular analysis in patients with non-small cell lung cancer following acquired resistance to first-line therapy: A systematic review and meta-analysis. Cancer Treat Res Commun 2021; 29:100470. [PMID: 34628209 DOI: 10.1016/j.ctarc.2021.100470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
MICRO ABSTRACT Rebiopsies characterizing resistance mutations in patients with non-small cell lung cancer (NSCLC) can guide personalized medicine and improve overall survival rates. In this systematic review, we examine the suitability of percutaneous core-needle biopsy (PT-CNB) to obtain adequate samples for molecular characterization of the acquired resistance mutation T790M. This review provides evidence that PT-CNB can obtain samples with high adequacy, with a mutation detection rate that is in accordance with prior literature. BACKGROUND Non-small cell lung cancer (NSCLC) comprises 85% of all lung cancers and has seen improved survival rates with the rise of personalized medicine. Resistance mutations to first-line therapies, such as T790M, however, render first-line therapies ineffective. Rebiopsies characterizing resistance mutations inform therapeutic decisions, which result in prolonged survival. Given the high efficacy of percutaneous core-needle biopsy (PT-CNB), we conducted the first systematic review to analyze the ability of PT-CNB to obtain samples of high adequacy in order to characterize the acquired resistance mutation T790M in patients with NSCLC. METHODS We performed a comprehensive literature search across PubMed, Embase, and CENTRAL. Search terms related to "NSCLC," "rebiopsy," and "PT-CNB" were used to obtain results. We included all prospective and retrospective studies that satisfied our inclusion and exclusion criteria. A random effects model was utilized to pool adequacy and detection rates of the chosen articles. We performed a systematic review, meta-analysis, and meta-regression to investigate the adequacy and T790M detection rates of samples obtained via PT-CNB. RESULTS Out of the 173 studies initially identified, 5 studies met the inclusion and exclusion criteria and were chosen for our final cohort of 436 patients for meta-analysis. The pooled adequacy rate of samples obtained via PT-CNB was 86.92% (95% CI: [79.31%, 92.0%]) and the pooled T790M detection rate was 46.0% (95% CI: [26.6%, 66.7%]). There was considerable heterogeneity among studies (I2 > 50%) in both adequacy and T790M detection rates. CONCLUSION PT-CNB can obtain adequate samples for T790M molecular characterization in NSCLC lung cancer patients. Additional prospective studies are needed to corroborate the results in this review.
Collapse
Affiliation(s)
- Bibhav Poudel
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jacob Desman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Gohta Aihara
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Deborah I Weidman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Ashley Tsang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Katherine Kovrizhkin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Tatiana Pereira
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Siddharth Arun
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Tejus Pradeep
- Department of Ophthalmology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Shababa Matin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Robert P Liddell
- Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, United States of America.
| |
Collapse
|
3
|
Epidemiologic Features of NSCLC Gene Alterations in Hispanic Patients from Puerto Rico. Cancers (Basel) 2020; 12:cancers12123492. [PMID: 33255238 PMCID: PMC7761356 DOI: 10.3390/cancers12123492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023] Open
Abstract
Simple Summary We have analyzed the molecular genetic profiles of Hispanic non-small cell lung cancer (NSCLC) patients from Puerto Rico. In addition to the general characteristics, especially on EGFR mutations, we have also reported some novel findings on the incidences of KRAS mutation subgroups, other driver gene alterations, and passenger gene alterations, as well as KRAS/TP53 and KRAS/STK11 co-mutations. Moreover, our study has identified the FGFR2-TACC2 translocation in this population. Abstract Targeted therapy has changed the paradigm of advanced NSCLC management by improving the survival rate of patients carrying actionable gene alterations using specific inhibitors. The epidemiologic features of these alterations vary among races. Understanding the racial differences benefits drug development, clinical trial design, and health resource allocation. Compared to Caucasian and Asian populations, current knowledge on Hispanic patients is less and no data of Hispanic patients from Puerto Rico have been reported. We retrieved and analyzed the demographic, clinical, and molecular data of Hispanic NSCLC patients from Puerto Rico with molecular tests performed in the Genoptix Medical Laboratory in Carlsbad, CA, USA between 2011 and 2018. The majority of the NSCLC patients in our study had either adenocarcinoma (75.4%) or squamous cell carcinoma (15.1%). The incidence of EGFR mutations was 24%. They were more common in female and younger patients (<60 years). The deletion of Exon 19 and Exon 21 L858R comprised 55.1% and 31.0% of all EGFR mutations, respectively. The frequency of the T790M mutation was lower compared to that of Hispanic patients reported in the literature (0.5% vs. 2.1%). In addition, 18.7% of the patients were positive for KRAS mutations, which was at the high end of that reported in Hispanic patients. Other driver gene alterations, ALK, MET, RET, ROS1, KRAS, ERBB2, etc., demonstrated similar incidences, as well as gender and age distributions to those previously reported. The KRAS/TP53 and KRAS/STK11 co-mutations were of very low frequencies (3.6%), which could potentially affect the responsiveness to PD1/PD-L1 immunotherapy. Our study demonstrated that the prevalence of NSCLC gene alterations in Hispanic patients from Puerto Rico was comparable to the reported average prevalence in Latin American countries, supporting the intermediate NSCLC gene alteration rate of Hispanic patients between Asian and Caucasian patients. Novel information of the frequencies of KRAS mutation subtypes, driver gene alterations in ROS1, BRAF, and ERBB2, and passenger gene alterations including a rare case with the FGFR2-TACC2 translocation in Hispanic NSCLC patients from Puerto Rico were also described.
Collapse
|