1
|
Lemieszek MK, Adamczyk P, Komaniecka I, Rzeski W, Tomczyk M, Wiater A. (1→3)-α-d-Glucooligosaccharides Increase the Killing Capacity of NK Cells against Selected Human Colon Cancer Cells. Molecules 2023; 28:molecules28104212. [PMID: 37241952 DOI: 10.3390/molecules28104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the progress of medicine, colorectal cancer has occupied one of the highest positions in the rankings of cancer morbidity and mortality for many years. Thus, alternative methods of its treatment are sought. One of the newer therapeutic strategies is immunotherapy based on NK cells (natural killers), which are the body's first line of defense against cancer. The aim of the study was to verify the possibility of using (1→3)-α-d-glucooligosaccharides (GOSs) obtained via acid hydrolysis of (1→3)-α-d-glucan from the fruiting body of Laetiporus sulphureus to improve the anticancer effect of NK-92 cells, with proven clinical utility, against selected human colon adenocarcinoma cell lines LS180 and HT-29. The study revealed that the investigated oligosaccharides significantly enhanced the ability of NK-92 cells to eliminate the examined colon cancer cells, mostly by an increase in their cytotoxic activity. The most significant effect was observed in LS180 and HT-29 cells exposed to a two-times higher quantity of NK cells activated by 500 µg/mL GOS, wherein NK-92 killing properties increased for 20.5% (p < 0.001) and 24.8% (p < 0.001), respectively. The beneficial impact of (1→3)-α-d-glucooligosaccharides on the anticancer properties of NK-92 suggests their use in colon cancer immunotherapy as adjuvants; however, the obtained data require further investigation and confirmation.
Collapse
Affiliation(s)
- Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, ul. Jaczewskiego 2, 20-090 Lublin, Poland
| | - Paulina Adamczyk
- Department of Industrial and Environmental Microbiology, Institute of Biological Science, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Science, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, ul. Jaczewskiego 2, 20-090 Lublin, Poland
- Department of Functional Anatomy and Cytobiology, Institute of Biological Science, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Science, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
2
|
Koizumi A, Miyazawa K, Ogata M, Takahashi Y, Yano S, Yoshimi A, Sano M, Hidaka M, Nihira T, Nakai H, Kimura S, Iwata T, Abe K. Cleavage of α-1,4-glycosidic linkages by the glycosylphosphatidylinositol-anchored α-amylase AgtA decreases the molecular weight of cell wall α-1,3-glucan in Aspergillus oryzae. FRONTIERS IN FUNGAL BIOLOGY 2023; 3:1061841. [PMID: 37746167 PMCID: PMC10512346 DOI: 10.3389/ffunb.2022.1061841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/29/2022] [Indexed: 09/26/2023]
Abstract
Aspergillus fungi contain α-1,3-glucan with a low proportion of α-1,4-glucan as a major cell wall polysaccharide. Glycosylphosphatidylinositol (GPI)-anchored α-amylases are conserved in Aspergillus fungi. The GPI-anchored α-amylase AmyD in Aspergillus nidulans has been reported to directly suppress the biosynthesis of cell wall α-1,3-glucan but not to degrade it in vivo. However, the detailed mechanism of cell wall α-1,3-glucan biosynthesis regulation by AmyD remains unclear. Here we focused on AoAgtA, which is encoded by the Aspergillus oryzae agtA gene, an ortholog of the A. nidulans amyD gene. Similar to findings in A. nidulans, agtA overexpression in A. oryzae grown in submerged culture decreased the amount of cell wall α-1,3-glucan and led to the formation of smaller hyphal pellets in comparison with the wild-type strain. We analyzed the enzymatic properties of recombinant (r)AoAgtA produced in Pichia pastoris and found that it degraded soluble starch, but not linear bacterial α-1,3-glucan. Furthermore, rAoAgtA cleaved 3-α-maltotetraosylglucose with a structure similar to the predicted boundary structure between the α-1,3-glucan main chain and a short spacer composed of α-1,4-linked glucose residues in cell wall α-1,3-glucan. Interestingly, rAoAgtA randomly cleaved only the α-1,4-glycosidic bonds of 3-α-maltotetraosylglucose, indicating that AoAgtA may cleave the spacer in cell wall α-1,3-glucan. Consistent with this hypothesis, heterologous overexpression of agtA in A. nidulans decreased the molecular weight of cell wall α-1,3-glucan. These in vitro and in vivo properties of AoAgtA suggest that GPI-anchored α-amylases can degrade the spacer α-1,4-glycosidic linkages in cell wall α-1,3-glucan before its insolubilization, and this spacer cleavage decreases the molecular weight of cell wall α-1,3-glucan in vivo.
Collapse
Affiliation(s)
- Ami Koizumi
- Laboratory of Applied Microbiology, Department of Biochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Biochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Filamentous Mycoses, Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ogata
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Yuzuru Takahashi
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Motoaki Sano
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Masafumi Hidaka
- Laboratory of Enzymology, Department of Biochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Biochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Prebiotic Potential of Oligosaccharides Obtained by Acid Hydrolysis of α-(1→3)-Glucan from Laetiporus sulphureus: A Pilot Study. Molecules 2020; 25:molecules25235542. [PMID: 33255915 PMCID: PMC7728339 DOI: 10.3390/molecules25235542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Increasing knowledge of the role of the intestinal microbiome in human health and well-being has resulted in increased interest in prebiotics, mainly oligosaccharides of various origins. To date, there are no reports in the literature on the prebiotic properties of oligosaccharides produced by the hydrolysis of pure fungal α-(1→3)-glucan. The aim of this study was to prepare α-(1→3)-glucooligosaccharides (α-(1→3)-GOS) and to perform initial evaluation of their prebiotic potential. The oligosaccharides were obtained by acid hydrolysis of α-(1→3)-glucan isolated from the fruiting bodies of Laetiporus sulphureus and then, characterized by HPLC. Fermentation of α-(1→3)-GOS and reference prebiotics was compared in in vitro pure cultures of Lactobacillus, Bifidobacterium, and enteric bacterial strains. A mixture of α-(1→3)-GOS, notably with a degree of polymerization of 2 to 9, was obtained. The hydrolysate was utilized for growth by most of the Lactobacillus strains tested and showed a strong bifidogenic effect, but did not promote the growth of Escherichia coli and Enterococcus faecalis. α-(1→3)-GOS proved to be effective in the selective stimulation of beneficial bacteria and can be further tested to determine their prebiotic functionality.
Collapse
|
5
|
Garcia-Gonzalez M, Minguet-Lobato M, Plou FJ, Fernandez-Lobato M. Molecular characterization and heterologous expression of two α-glucosidases from Metschnikowia spp, both producers of honey sugars. Microb Cell Fact 2020; 19:140. [PMID: 32652991 PMCID: PMC7353701 DOI: 10.1186/s12934-020-01397-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND α-Glucosidases are widely distributed enzymes with a varied substrate specificity that are traditionally used in biotechnological industries based on oligo- and polysaccharides as starting materials. According to amino acid sequence homology, α-glucosidases are included into two major families, GH13 and GH31. The members of family GH13 contain several α-glucosidases with confirmed hydrolytic activity on sucrose. Previously, a sucrose splitting activity from the nectar colonizing yeast Metschnikowia reukaufii which produced rare sugars with α-(1→1), α-(1→3) and α-(1→6) glycosidic linkages from sucrose was described. RESULTS In this study, genes codifying for α-glucosidases from the nectaries yeast M. gruessii and M. reukaufii were characterised and heterologously expressed in Escherichia coli for the first time. Recombinant proteins (Mg-αGlu and Mr-αGlu) were purified and biochemically analysed. Both enzymes mainly displayed hydrolytic activity towards sucrose, maltose and p-nitrophenyl-α-D-glucopyranoside. Structural analysis of these proteins allowed the identification of common features from the α-amylase family, in particular from glycoside hydrolases that belong to family GH13. The three acidic residues comprising the catalytic triad were identified and their relevance for the protein hydrolytic mechanism confirmed by site-directed mutagenesis. Recombinant enzymes produced oligosaccharides naturally present in honey employing sucrose as initial substrate and gave rise to mixtures with the same products profile (isomelezitose, trehalulose, erlose, melezitose, theanderose and esculose) previously obtained with M. reukaufii cell extracts. Furthermore, the same enzymatic activity was detected with its orthologous Mg-αGlu from M. gruessii. Interestingly, the isomelezitose amounts obtained in reactions mediated by the recombinant proteins, ~ 170 g/L, were the highest reported so far. CONCLUSIONS Mg/Mr-αGlu were heterologously overproduced and their biochemical and structural characteristics analysed. The recombinant α-glucosidases displayed excellent properties in terms of mild reaction conditions, in addition to pH and thermal stability. Besides, the enzymes produced a rare mixture of hetero-gluco-oligosaccharides by transglucosylation, mainly isomelezitose and trehalulose. These compounds are natural constituents of honey which purification from this natural source is quite unviable, what make these enzymes very interesting for the biotechnological industry. Finally, it should be remarked that these sugars have potential applications as food additives due to their suitable sweetness, viscosity and humectant capacity.
Collapse
Affiliation(s)
- Martin Garcia-Gonzalez
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Marina Minguet-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2. Cantoblanco, 28049, Madrid, Spain
| | - Maria Fernandez-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid. C/Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|