1
|
Lawton A, Tripodi N, Feehan J. Running on empty: Exploring stem cell exhaustion in geriatric musculoskeletal disease. Maturitas 2024; 188:108066. [PMID: 39089047 DOI: 10.1016/j.maturitas.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024]
Abstract
Ageing populations globally are associated with increased musculoskeletal disease, including osteoporosis and sarcopenia. These conditions place a significant burden of disease on the individual, society and the economy. To address this, we need to understand the underpinning biological changes, including stem cell exhaustion, which plays a key role in the ageing of the musculoskeletal system. This review of the recent evidence provides an overview of the associated biological processes. The review utilised the PubMed/Medline, Science Direct, and Google Scholar databases. Mechanisms of ageing identified involve a reaction to the chronic inflammation and oxidative stress associated with ageing, resulting in progenitor cell senescence and adipogenic differentiation, leading to decreased mass and quality of both bone and muscle tissue. Although the mechanisms underpinning stem cell exhaustion are unclear, it remains a promising avenue through which to identify new strategies for prevention, detection and management.
Collapse
Affiliation(s)
- Amy Lawton
- Institute for Health and Sport, Victoria University, Melbourne, Australia; College of Sport, Health and Engineering, Victoria University, Melbourne, Australia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia; First Year College, Victoria University, Melbourne, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia; School of Health and Biomedical Sciences, STEM College, RMIT, Melbourne, Australia.
| |
Collapse
|
2
|
Kim CJ, Kim SH, Lee EY, Hwang YH, Lee SY, Joo ST. Effect of Chicken Age on Proliferation and Differentiation Abilities of Muscle Stem Cells and Nutritional Characteristics of Cultured Meat Tissue. Food Sci Anim Resour 2024; 44:1167-1180. [PMID: 39246538 PMCID: PMC11377197 DOI: 10.5851/kosfa.2024.e72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
This study aimed to investigate effects of chicken age on proliferation and differentiation capacity of muscle satellite cells (MSCs) and to determine total amino acid contents of cultured meat (CM) produced. Chicken MSCs (cMSCs) were isolated from hindlimb muscles of broiler chickens at 5-week-old (5W) and 19-embryonic-day (19ED), respectively. Proliferation abilities (population doubling time and cell counting kit 8) of cMSCs from 19ED were significantly higher than those from 5W (p<0.05). Likewise, both myotube formation area and expression of myosin heavy chain heavy of cMSCs from 19ED were significantly higher than those from 5W (p<0.05). After cMSCs were serially subcultured for long-term cultivation in 2D flasks to produce cultured meat tissue (CMT), total amino acid contents of CMT showed no significant difference between 5W and 19ED chickens (p>0.05). This finding suggests that cMSCs from chicken embryos are more suitable for improving the production efficiency of CM than those derived from young chickens.
Collapse
Affiliation(s)
- Chan-Jin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - So-Hee Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Seung-Yun Lee
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
3
|
Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z, Chen K. Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov 2024; 10:129. [PMID: 38467615 PMCID: PMC10928160 DOI: 10.1038/s41420-024-01904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
The disruption of circadian rhythms caused by long-term shift work can cause metabolic diseases such as obesity. Early growth response 3 (EGR3) is a member of early growth response (EGR) family, which is involved in several cellular responses, had been reported as a circadian rhythm gene in suprachiasmatic nucleus. In this research, EGR3 was found to be widely expressed in the different tissue of human and mice, and downregulated in adipose tissue of obese subjects and high-fat diet mice. Moreover, EGR3 was found negatively regulated by cortisol. In addition, EGR3 is a key negative modulator of hADSCs and 3T3-L1 adipogenesis via regulating HDAC6, which is a downstream target gene of EGR3 and a negative regulator of adipogenesis and lipogenesis. These findings may explain how circadian rhythm disorder induced by shift works can cause obesity. Our study revealed a potential therapeutic target to alleviate metabolic disorders in shift workers and may provide better health guidance to shift workers.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, 410005, Hunan, PR China
| | - Keke Zhang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
4
|
Kanazawa Y, Nagano M, Koinuma S, Sugiyo S, Shigeyoshi Y. Effects of aging on basement membrane-related gene expression of the skeletal muscle in rats. Biomed Res 2021; 42:115-119. [PMID: 34092753 DOI: 10.2220/biomedres.42.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The basement membrane (BM), with collagen IV as a major component, plays an important role in the maintenance of muscle structure and its robustness. To investigate the effects of aging on factors related to BM construction, we compared the expression status of these factors in 3- and 20-month-old male Wistar rats. The expression levels of Col4a1 and Col4a2 (encoding collagen IV), Sparc (involved in collagen IV functionalization), and Mmp14 (a collagen IV degradation factor) were decreased. These results suggest that aging suppresses collagen IV synthetic and degradative factors and affects BM-related factors in the steady state.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Medical Technology and Clinical Engineering, Hokuriku University.,Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University
| | - Shinichi Sugiyo
- Department of Physical Therapy, Osaka University of Human Sciences
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University
| |
Collapse
|
5
|
Zhang X, Ruan Y, Wu AK, Zaid U, Villalta JD, Wang G, Banie L, Reed-Maldonado AB, Lin G, Lue TF. Delayed Treatment With Low-intensity Extracorporeal Shock Wave Therapy in an Irreversible Rat Model of Stress Urinary Incontinence. Urology 2020; 141:187.e1-187.e7. [PMID: 32283169 DOI: 10.1016/j.urology.2020.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine the outcomes and mechanisms of delayed low-intensity extracorporeal shock wave therapy (Li-ESWT) in a rat model of irreversible stress urinary incontinence (SUI). MATERIALS AND METHODS Twenty-four female Sprague-Dawley rats were randomly assigned into 3 groups: sham control, vaginal balloon dilation + β-aminopropionitrile (BAPN; SUI group), and vaginal balloon dilation + BAPN + treatment with Li-ESWT (SUI-Li-ESWT group). An irreversible SUI model was developed by inhibiting the urethral structural recovery with BAPN daily for 5 weeks. Thereafter, in the SUI-Li-ESWT group, Li-ESWT was administered twice per week for 2 weeks. After a 1-week washout, all 24 rats were evaluated with functional and histologic studies at 17 weeks of age. Endogenous progenitor cells were detected via the EdU-labeling method. RESULTS Functional analysis with leak point pressure testing showed that the SUI-Li-ESWT group had significantly higher leak point pressures compared with untreated rats. Increased urethral and vaginal smooth and striated muscle content and increased thickness of the vaginal wall were noted in the SUI-Li-ESWT group. The SUI group had significantly decreased neuronal nitric oxide /tyrosine hydroxylase positive nerves ratio in the smooth muscle layers of the urethra, while the SUI-Li-ESWT group had neuronal nitric oxide/tyrosine hydroxylase+ nerves ratio similar to that of the control group. The continuality of urothelial cell lining was also improved in the SUI-Li-ESWT group. In addition, there were significantly increased EdU-positive cells in the SUI-Li-ESWT group. CONCLUSION Li-ESWT appears to increase smooth muscle content in the urethra and the vagina, increase the thickness of urethral wall, improve striated muscle content and neuromuscular junctions, restore the integrity of the urothelium, and increase the number of EdU-retaining progenitor cells in the urethral wall.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Yajun Ruan
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Alex K Wu
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Uwais Zaid
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Jaqueline D Villalta
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Guifang Wang
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Lia Banie
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Amanda B Reed-Maldonado
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Guiting Lin
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA
| | - Tom F Lue
- Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, CA.
| |
Collapse
|