1
|
Feng G, Xu X, Liu W, Hao F, Yang Z, Nie G, Huang L, Peng Y, Bushman S, He W, Zhang X. Transcriptome Profiling Provides Insights into the Early Development of Tiller Buds in High- and Low-Tillering Orchardgrass Genotypes. Int J Mol Sci 2023; 24:16370. [PMID: 38003564 PMCID: PMC10671593 DOI: 10.3390/ijms242216370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Orchardgrass (Dactylis glomerata L.) is among the most economically important perennial cool-season grasses, and is considered an excellent hay, pasture, and silage crop in temperate regions worldwide. Tillering is a vital feature that dominates orchardgrass regeneration and biomass yield. However, transcriptional dynamics underlying early-stage bud development in high- and low-tillering orchardgrass genotypes are unclear. Thus, this study assessed the photosynthetic parameters, the partially essential intermediate biomolecular substances, and the transcriptome to elaborate the early-stage profiles of tiller development. Photosynthetic efficiency and morphological development significantly differed between high- (AKZ-NRGR667) and low-tillering genotypes (D20170203) at the early stage after tiller formation. The 206.41 Gb of high-quality reads revealed stage-specific differentially expressed genes (DEGs), demonstrating that signal transduction and energy-related metabolism pathways, especially photosynthetic-related processes, influence tiller induction and development. Moreover, weighted correlation network analysis (WGCNA) and functional enrichment identified distinctively co-expressed gene clusters and four main regulatory pathways, including chlorophyll, lutein, nitrogen, and gibberellic acid (GA) metabolism pathways. Therefore, photosynthesis, carbohydrate synthesis, nitrogen efficient utilization, and phytohormone signaling pathways are closely and intrinsically linked at the transcriptional level. These findings enhance our understanding of tillering in orchardgrass and perennial grasses, providing a new breeding strategy for improving forage biomass yield.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Feigxiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaun Bushman
- Forage and Range Research Laboratory, United States Department of Agriculture, 695 North 1100 East, Logan, UT 84322-6300, USA
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Qu M, Zheng Y, Bi L, Yang X, Shang P, Zhou X, Zeng B, Shen B, Li W, Fan Y, Zeng B. Comparative transcriptomic analysis of the gene expression and underlying molecular mechanism of submergence stress response in orchardgrass roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1104755. [PMID: 36704155 PMCID: PMC9871833 DOI: 10.3389/fpls.2022.1104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Submergence stress creates a hypoxic environment. Roots are the first plant organ to face these low-oxygen conditions, which causes damage and affects the plant growth and yield. Orchardgrass (Dactylis glomerata L.) is one of the most important cold-season forage grasses globally. However, their submergence stress-induced gene expression and the underlying molecular mechanisms of orchardgrass roots are still unknown. METHODS Using the submergence-tolerant 'Dianbei' and submergence-sensitive 'Anba', the transcriptomic analysis of orchardgrass roots at different time points of submergence stress (0 h, 8 h, and 24 h) was performed. RESULTS We obtained 118.82Gb clean data by RNA-Seq. As compared with the control, a total of 6663 and 9857 differentially expressed genes (DEGs) were detected in Dianbei, while 7894 and 11215 DEGs were detected in Anba at 8 h and 24 h post-submergence-stress, respectively. Gene Ontology (GO) enrichment analysis obtained 986 terms, while Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis obtained 123 pathways. Among them, the DEGs in plant hormones, mitogen-activated protein kinase (MAPK) and Ca2+ signal transduction were significantly differentially expressed in Dianbei, but not in Anba. DISCUSSION This study was the first to molecularly elucidate the submergence stress tolerance in the roots of two orchardgrass cultivars. These findings not only enhanced our understanding of the orchardgrass submergence tolerance, but also provided a theoretical basis 36 for the cultivation of submergence-tolerant forage varieties.
Collapse
Affiliation(s)
- Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Lei Bi
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xingyun Yang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Panpan Shang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bingna Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenwen Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Fan
- Institute of Prataculture, Chongqing Academy of Animal Science, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing University Herbivore Engineering Research Center, Chongqing, China
| |
Collapse
|
3
|
Pan J, Zhou Q, Wang H, Chen Y, Wang Z, Zhang J. Genome-wide identification and characterization of abiotic stress responsive GRAS family genes in oat ( Avena sativa). PeerJ 2023; 11:e15370. [PMID: 37187518 PMCID: PMC10178225 DOI: 10.7717/peerj.15370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Background GRAS transcription factors play a variety of functions in plant growth and development and are named after the first three transcription factors GAI (GIBBERRELLICACIDINSENSITIVE), RGA (REPRESSOROFGAI), and SCR (SCARECROW) found in this family. Oat (Avena sativa) is one of the most important forage grasses in the world. However, there are few reports on the GRAS gene family in oat. Methods In order to understand the information and expression pattern of oat GRAS family members, we identified the GRAS members and analyzed their phylogenetic relationship, gene structure, and expression pattern in oat by bioinformatics technology. Results The results showed that the oat GRAS family consists of 30 members, and most of the AsGRAS proteins were neutral or acidic proteins. The phylogenetic tree divided the oat GRAS members into four subfamilies, and each subfamily has different conservative domains and functions. Chromosome location analysis suggested that 30 GRAS genes were unevenly distributed on five chromosomes of oat. The results of real-time quantitative reverse transcription-PCR (qRT-PCR) showed that some AsGRAS genes (AsGRAS12, AsGRAS14, AsGRAS21, and AsGRAS24) were all up-regulated with increasing stress treatment time.The results of this study provide a theoretical basis for further research into the corresponding stress of oat. Therefore, further studies concentrating on these AsGRAS genes might reveal the many roles played by GRAS genes in oat.
Collapse
Affiliation(s)
- Jing Pan
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Qingping Zhou
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Hui Wang
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Youjun Chen
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Zhiqiang Wang
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Junchao Zhang
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
SCR Suppressor Mutants: Role in Hypocotyl Gravitropism and Root Growth in Arabidopsis thaliana. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The SCARECROW (SCR) transcription factor plays a key role in plant growth and development. However, we know very little about the role of SCR regulated pathways in plant development. Here, we used the homozygous scr1 mutant Arabidopsis thaliana (Wassilewskija ecotype), which had a T-DNA insertion in the SCR coding region and lacks a detectable SCR transcript. This scr1 mutant has a determinate mode of root growth, shoot agravitropism and abnormal internal architecture in all organs examined. To screen for mutants that suppress the scr1 abnormal phenotypes, we exposed homozygous scr1 seeds to ethyl methane sulphonate (EMS) mutagen. Upon growth out of these mutagenized seeds, thirteen suppressor mutant-harboring strains were identified. All thirteen suppressor-harboring strains were homozygous for scr1 and lacked the SCR transcript. Ten scr hypocotyl gravitropic suppressor lines showed improved hypocotyl gravitropic response. These ten suppressors fall into six complementation groups suggesting six different gene loci. Similarly, three independent scr root length suppressor lines rescued only the root growth phenotype and fell into three complementation groups, suggesting the involvement of three different gene loci. These suppressors might identify novel functions of the SCR gene in plant development.
Collapse
|
5
|
He Z, Tian Z, Zhang Q, Wang Z, Huang R, Xu X, Wang Y, Ji X. Genome-wide identification, expression and salt stress tolerance analysis of the GRAS transcription factor family in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:1022076. [PMID: 36352865 PMCID: PMC9638169 DOI: 10.3389/fpls.2022.1022076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The GRAS gene family is a plant-specific family of transcription factors and play a vital role in many plant growth processes and abiotic stress responses. Nevertheless, the functions of the GRAS gene family in woody plants, especially in Betula platyphylla (birch), are hardly known. In this study, we performed a genome-wide analysis of 40 BpGRAS genes (BpGRASs) and identified typical GRAS domains of most BpGRASs. The BpGRASs were unevenly distributed on 14 chromosomes of birch and the phylogenetic analysis of six species facilitated the clustering of 265 GRAS proteins into 17 subfamilies. We observed that closely related GRAS homologs had similar conserved motifs according to motif analysis. Besides, an analysis of the expression patterns of 26 BpGRASs showed that most BpGRASs were highly expressed in the leaves and responded to salt stress. Six BpGRASs were selected for cis-acting element analysis because of their significant upregulation under salt treatment, indicating that many elements were involved in the response to abiotic stress. This result further confirmed that these BpGRASs might participate in response to abiotic stress. Transiently transfected birch plants with transiently overexpressed 6 BpGRASs and RNAi-silenced 6 BpGRASs were generated for gain- and loss-of-function analysis, respectively. In addition, overexpression of BpGRAS34 showed phenotype resistant to salt stress, decreased the cell death and enhanced the reactive oxygen species (ROS) scavenging capabilities and proline content under salt treatment, consistent with the results in transiently transformed birch plants. This study is a systematic analysis of the GRAS gene family in birch plants, and the results provide insight into the molecular mechanism of the GRAS gene family responding to abiotic stress in birch plants.
Collapse
Affiliation(s)
- Zihang He
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zengzhi Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ruikun Huang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xin Xu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Lu X, Zhang H, Hu J, Nie G, Khan I, Feng G, Zhang X, Wang X, Huang L. Genome-wide identification and characterization of bHLH family genes from orchardgrass and the functional characterization of DgbHLH46 and DgbHLH128 in drought and salt tolerance. Funct Integr Genomics 2022; 22:1331-1344. [PMID: 35941266 DOI: 10.1007/s10142-022-00890-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
Basic helix-loop-helix (bHLH) is the second largest family of transcription factors that widely exist in plants and animals, and plays a key role in a variety of biological processes. As an important forage crop worldwide, little information is available about the bHLH family in orchardgrass (Dactylis glomerata L.), although a huge number of bHLH family have been identified and characterized in plants. In this study, we performed genome-wide analysis of bHLH transcription factor family of orchardgrass and identified 132 DgbHLH genes. The phylogenetic tree was constructed by using bHLH proteins of orchardgrass, with Arabidopsis thaliana and Oryza sativa bHLH proteins, to elucidate their homology and classify them into 22 subfamilies. The results of conserved motifs and gene structure support the classification of DgbHLH family. In addition, chromosomal location and gene duplication events of DgbHLH genes were further studied. Transcriptome data exhibited that DgbHLH genes were differentially expressed in different tissues of orchardgrass. We analyzed the gene expression level of 12 DgbHLH genes in orchardgrass under three types of abiotic stresses (heat, salt, and drought). Finally, heterologous expression assays in yeast indicated that DgbHLH46 and DgbHLH128 may enhance the resistance to drought and salt stress. Furthermore, DgbHLH128 may also be involved in abiotic stress by binding to the MYC element. Our study provides a comprehensive assessment of DgbHLH family of orchardgrass, revealing new insights for enhancing gene utilization and improving forage performance.
Collapse
Affiliation(s)
- Xiaowen Lu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jialing Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
7
|
Zhu X, Wang B, Wei X. Genome wide identification and expression pattern analysis of the GRAS family in quinoa. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:948-962. [PMID: 34092279 DOI: 10.1071/fp21017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
GRAS, a key transcription factor in plant growth and development, has not yet been reported in quinoa. Therefore, this study used the latest quinoa genomic data to identify and analyse GRAS genes in quinoa: 52 GRAS genes were identified in quinoa, these being unevenly distributed on 19 chromosomes. Fragment duplication and tandem duplication events were the main reasons for the expansion of the GRAS gene family in quinoa. Protein sequence analysis showed that there were some differences in amino acid numbers and isoelectric points amongst different subfamilies, and the main secondary structures were α-helix and random coil. The CqGRAS gene was divided into 14 subfamilies based on results from phylogenetic analysis. The genes located in the same subfamily had similar gene structures, conserved motifs, and three-level models. Promoter region analysis showed that the GRAS family genes contained multiple homeostasis elements that responded to hormones and adversity. GO enrichment indicated that CqGRAS genes were involved in biological processes, cell components, and molecular functions. By analysing the expression of CqGRAS genes in different tissues and different treatments, it was found that GRAS genes had obvious differential expression in different tissues and stress, which indicates that GRAS genes had tissue or organ expression specificity and thus might play an important role in response to stress. These results laid a foundation for further functional research on the GRAS gene family in quinoa.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; and Corresponding author.
| |
Collapse
|
8
|
Lv G, Zheng X, Duan Y, Wen Y, Zeng B, Ai M, He B. The GRAS gene family in watermelons: identification, characterization and expression analysis of different tissues and root-knot nematode infestations. PeerJ 2021; 9:e11526. [PMID: 34123598 PMCID: PMC8164414 DOI: 10.7717/peerj.11526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
The family of GRAS plant-specific transcription factor plays diverse roles in numerous biological processes. Despite the identification and characterization of GRAS genes family in dozens of plant species, until now, GRAS members in watermelon (Citrullus lanatus) have not been investigated comprehensively. In this study, using bioinformatic analysis, we identified 37 GRAS genes in the watermelon genome (ClGRAS). These genes are classified into 10 distinct subfamilies based on previous research, and unevenly distributed on 11 chromosomes. Furthermore, a complete analysis was conducted to characterize conserved motifs and gene structures, which revealed the members within same subfamily that have analogous conserved gene structure and motif composition. Additionally, the expression pattern of ClGRAS genes was characterized in fruit flesh and rind tissues during watermelon fruit development and under red light (RL) as well as root knot nematode infestation. Finally, for verification of the availability of public transcriptome data, we also evaluated the expression levels of randomly selected four ClGRAS genes under RL and nematode infection by using qRT-PCR. The qRT-PCR results indicated that several ClGRAS genes were differentially expressed, implying their vital role in RL induction of watermelon resistance against root-knot nematodes. The results obtained in this study could be useful in improving the quality of watermelon.
Collapse
Affiliation(s)
- Gongbo Lv
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xing Zheng
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| | - Yitian Duan
- Renmin University of China, School of Information, Beijing, China
| | - Yunyong Wen
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| | - Bin Zeng
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China.,Shenzhen Technology University, College of Pharmacy, Shenzhen, Guangdong, China
| | - Mingqiang Ai
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| | - Bin He
- College of Life Sciences, Jiangxi Science & Technology Normal University, Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Feng G, Han J, Yang Z, Liu Q, Shuai Y, Xu X, Nie G, Huang L, Liu W, Zhang X. Genome-wide identification, phylogenetic analysis, and expression analysis of the SPL gene family in orchardgrass (Dactylis glomerata L.). Genomics 2021; 113:2413-2425. [PMID: 34058273 DOI: 10.1016/j.ygeno.2021.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
SPL (SQUAMOSA promoter binding protein-like) is a plant-specific transcription factor family that contains the conserved SBP domain, which plays a vital role in the vegetative-to-reproductive phase transition, flowering development and regulation, tillering/branching, and stress responses. Although the SPL family has been identified and characterized in various plant species, limited information about it has been obtained in orchardgrass, which is a critical forage crop worldwide. In this study, 17 putative DgSPL genes were identified among seven chromosomes, and seven groups that share similar gene structures and conserved motifs were determined by phylogenetic analysis. Of these, eight genes have potential target sites for miR156. cis-Element and gene ontology annotation analysis indicated DgSPLs may be involved in regulating development and abiotic stress responses. The expression patterns of eight DgSPL genes at five developmental stages, in five tissues, and under three stress conditions were determined by RNA-seq and qRT-PCR. These assays indicated DgSPLs are involved in vegetative-to-reproductive phase transition, floral development, and stress responses. The transient expression analysis in tobacco and heterologous expression assays in yeast indicated that miR156-targeted DG1G01828.1 and DG0G01071.1 are nucleus-localized proteins, that may respond to drought, salt, and heat stress. Our study represents the first systematic analysis of the SPL family in orchardgrass. This research provides a comprehensive assessment of the DgSPL family, which lays the foundation for further examination of the role of miR156/DgSPL in regulating development and stress responses in forages grasses.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jiating Han
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Shuai
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|