1
|
Abdullah HD, Kamal I, Sabry SA, Elghany MA, Hakim Ramadan AE. Effective tailoring of cefepime into bilosomes: A promising nanoplatform for enhancing oral absorption, extending half-life, and evaluating biocompatibility, antibacterial, anti-biofilm, anti-breast cancer activity, ex-vivo, and in-vivo studies. Int J Pharm 2025; 668:125001. [PMID: 39586513 DOI: 10.1016/j.ijpharm.2024.125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The clinical implication of cefepime HCl (CEF) is compromised owing to restricted oral bioavailability and harmful adverse effects without any authorized oral formulation available. The present investigation provides an innovative sustained-release oral drug delivery strategy that tackles the challenges of limited oral bioavailability and prolongs the half-life of CEF. Accordingly, CEF was loaded into a bilosome, a liposome or noisome-based vesicle employing bile salt as a permeation enhancer. Despite its hydrophilic nature, the drug was effectively loaded into bilosomes. Nine various formulas were fabricated by a reverse phase evaporation method. The resulting vesicles increased the encapsulation efficiency (EE %) from 39.31 ± 0.03 % to 63.09 ± 0.01 %, drug loading capacity (DLC %) from 6.99 ± 0.25 to 42.91 ± 0.11 %, the particle size (PS) from 264 ± 13.52 nm to 405.40 ± 8.91 nm, and the polydispersity index (PDI) values ranged from 0.243 ± 0.040 to 0.430 ± 0.050. The zeta potential (ZP) changed from - 35.67 ± 3.73 mV to - 62.21 ± 2.21 mV. Further, the release profile exhibited dual release pattern within 24 h, with the percentage of release (CR %) expanding from 42 ± 0.13 % to 69.16 ± 0.09 %. The selected formula was found to be B3 with EE % = 56.61 ± 0.02 %, PS = 264 ± 13.52 nm, ZP = - 62.21 ± 2.21 mV, PDI = 0.430 ± 0.050, CR % = 52.94 ± 0.06 %, and IC50 of 3.4 ± 0.40 µg/ml against MCF-7 cells with scattered spherical non-agglomerated vesicles. Additionally, it exhibited higher anti-MRSA biofilm, relative bioavailability (5.1 fold), and antimicrobial capacity against P. aeruginosa, E. coli, B. subtilis, and S. aureus compared to pure CEF. Our data demonstrate that bilosome is a powerful nanocarrier for oral delivery of cefepime, boosting its biological impacts and pharmacokinetic profile.
Collapse
Affiliation(s)
- Hend Diaa Abdullah
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Shereen A Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mahmoud Abd Elghany
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Abd El Hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| |
Collapse
|
2
|
Yao S, Ren S, Cai C, Cao X, Shi Y, Wu P, Ye Y. Glycocholic acid supplementation improved growth performance and alleviated tissue damage in the liver and intestine in Pelteobagrus fulvidraco fed a high-pectin diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:41-57. [PMID: 36454392 DOI: 10.1007/s10695-022-01148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
In a study on the anti-nutritional effect of dietary fiber, it was noticed that a high-pectin diet (PEC diet) caused growth retardation, hepatic cholestasis, steatosis, fibrosis, and enteritis accompanied by decreased glycocholic acid (GCA) in Pelteobagrus fulvidraco. This study was conducted to investigate the potential alleviating effects of supplementation with GCA. A PEC diet and a diet supplemented with 0.6 g kg-1 GCA based on the PEC diet (named the GCA diet) were formulated and randomly fed to juvenile Pelteobagrus fulvidraco. Compared to fish that were fed the PEC diet for 7 days, the GCA content in liver increased significantly in fish fed the GCA diet, the incidence of abnormal liver color, gallbladder somatic index (GBSI), total bile acid concentration in serum and liver, and the expression of arnesoid X receptor gene (fxr) upregulated and genes involved in bile acid (BA) synthesis and uptake in liver decreased significantly. After 56 days, the SGR, the expression of fxr and genes involved in BA synthesis and transportation in the liver, the serum content of total bilirubin, total protein, and globulin were significantly higher, while the hepatosomatic index, GBSI, liver lipid and collagen content, and the incidence of distal intestine tissue damage were lower in fish fed the GCA diet than in those fed the PEC diet. These results suggested that GCA improved growth performance and alleviated hepatic cholestasis and tissue damage to the liver and intestine induced by a high-pectin diet, which might occur through activating FXR.
Collapse
Affiliation(s)
- Shibin Yao
- School of Biology & Basic Medical Sciences , Soochow University, Suzhou, 215123, People's Republic of China
| | - Shengjie Ren
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224000, People's Republic of China
| | - Chunfang Cai
- School of Biology & Basic Medical Sciences , Soochow University, Suzhou, 215123, People's Republic of China.
| | - Xiamin Cao
- School of Biology & Basic Medical Sciences , Soochow University, Suzhou, 215123, People's Republic of China
| | - Ye Shi
- School of Biology & Basic Medical Sciences , Soochow University, Suzhou, 215123, People's Republic of China
| | - Ping Wu
- School of Biology & Basic Medical Sciences , Soochow University, Suzhou, 215123, People's Republic of China
| | - Yuantu Ye
- School of Biology & Basic Medical Sciences , Soochow University, Suzhou, 215123, People's Republic of China
| |
Collapse
|
3
|
Ma H, Bian S, Han P, Li Y, Ni A, Zhang R, Ge P, Wang Y, Zhao J, Zong Y, Yuan J, Sun Y, Chen J. Supplementation of exogenous bile acids improve antitrichomonal activity and enhance intestinal health in pigeon (Columba livia). Poult Sci 2023; 102:102722. [PMID: 37167885 DOI: 10.1016/j.psj.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The study investigated the effects of supplementation of bile acids in drinking water on antitrichomonal activity, growth performance, immunity and microbial composition of pigeon. A total of 180 pairs of White King parent pigeons were randomly assigned to 5 treatments of 6 replications with 6 pairs of parent pigeons and 12 squabs in each replicate. The control (CON) group drank water without any additions. The metronidazole (MTZ) group drank water with 500 μg/mL metronidazole for 7 d and without any additions in other days. The else groups drank water with 500, 750, and 1,250 μg/mL bile acid (BAL, BAM, BAH) for 28 d. The results showed that Trichomonas gallinae (T. gallinae) in MTZ, BAL, BAM, and BAH groups were lower than that in CON group at 14, 21, and 28 d of parent pigeons (P < 0.05) and at 21 and 28 d of squabs (P < 0.05). Albumin and alanine transaminase in CON group were higher than those in MTZ, BAL, and BAH groups (P < 0.05). The levels of soluble CD8 were higher in MTZ and BAH groups compared with CON group (P < 0.05). The lesions in oral mucosa, thymus, liver, and spleen tissues of CON group could be observed. Abundance-based coverage estimator (ACE) index in BAH group was higher than that in CON and MTZ groups. Simpson index in CON and BAH groups was higher than MTZ group (P < 0.05). Lactobacillus was the highest colonized colonic bacteria in genera that were 77.21, 91.20, and 73.19% in CON, MTZ, and BAH, respectively. In conclusion, drinking water supplemented with 500, 750, and 1,250 μg/mL bile acid could inhibit growth of T. gallinae in both parent pigeons and squabs. Squabs infected with T. gallinae in control group had higher mortality rate and more serious tissue lesions. Squabs in bile acids treated group had more sCD8 in serum and abundant intestinal morphology. Bile acids could be an efficient drinking supplements to inhibit T. gallinae and improve pigeon adaptive immunity and intestinal health.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shixiong Bian
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengmin Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingzhuang Ge
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinmeng Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Liposomes encapsulating methylene blue and acridine orange: An approach for phototherapy of skin cancer. Colloids Surf B Biointerfaces 2022; 220:112901. [DOI: 10.1016/j.colsurfb.2022.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
5
|
Di Modica M, Arlotta V, Sfondrini L, Tagliabue E, Triulzi T. The Link Between the Microbiota and HER2+ Breast Cancer: The New Challenge of Precision Medicine. Front Oncol 2022; 12:947188. [PMID: 35912227 PMCID: PMC9326166 DOI: 10.3389/fonc.2022.947188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
The microbiota is emerging as a key player in cancer due to its involvement in several host physiological functions, including digestion, development of the immune system, and modulation of endocrine function. Moreover, its participation in the efficacy of anticancer treatments has been well described. For instance, the involvement of the breast microbiota in breast cancer (BC) development and progression has gained ground in the past several years. In this review, we report and discuss new findings on the impact of the gut and breast microbiota on BC, focusing on the HER2+ BC subtype, and the possibility of defining microbial signatures that are associated with disease aggressiveness, treatment response, and therapy toxicity. We also discuss novel insights into the mechanisms through which microorganism-host interactions occur and the possibility of microbiota editing in the prevention and treatment optimization of BC.
Collapse
Affiliation(s)
- Martina Di Modica
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Arlotta
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- *Correspondence: Elda Tagliabue,
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
6
|
Luo C, Zhang X, He Y, Chen H, Liu M, Wang H, Tang L, Tu G, Ding M. A pseudo-targeted metabolomics study based on serum bile acids profiling for the differential diagnosis of benign and malignant breast lesions. Steroids 2021; 175:108914. [PMID: 34481814 DOI: 10.1016/j.steroids.2021.108914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Breast cancer (BC) has become the most commonly diagnosed cancer worldwide. It is very critical for the differential diagnosis between BC and benign breast diseases (BBD). The characteristics of serum bile acids (BAs) profiling in patients with BBD and BC was elucidated so that potential biomarkers could be find out for the differential diagnosis of BC and BBD. METHODS A pseudo-targeted approach was used to perform BAs metabolomics analysis in serum of 29 patients with BBD and 47 patients with BC by ultra-high performance liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Partial least squares-discriminant analysis (PLS-DA) was used to establish a differential diagnostic model for BC, and the receiver operating characteristic (ROC) curve and logistic regression analysis were used to screen out bile acids as biomarkers for the differential diagnosis of BC and BBD. RESULTS The serum BAs profile in BC group was quite different from that in BBD group. Compared with the BBD group, BC group had higher level of chenodeoxycholic acid (CDCA), while they had lower levels of dihydroxy tauro-conjugated BA (Tdi-1) and sulfated dihydroxy glyco-conjugated BA (Gdi-S-1). The sensitivity and specificity of PLS-DA model for patients classification were 100% and 92.3%, respectively. The combined biomarker, CDCA and Tdi-1, had high efficacy for the differential diagnosis (area under the curve was 0.954, 95% CI: 0.880-1.000) of BC. Besides, the performance was superior to traditional biomarkers in the differential diagnosis of BC with or without comorbidities. CONCLUSION The profile of serum BAs in women with BC was quite different from that in patients with BBD. Serum BAs profiling analysis could be used as an effective tool for the differential diagnosis of BC and BBD.
Collapse
Affiliation(s)
- Can Luo
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoqing Zhang
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yifan He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Haoran Wang
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lingfeng Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Min Ding
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Saeed HK, Sutar Y, Patel P, Bhat R, Mallick S, Hatada AE, Koomoa DLT, Lange I, Date AA. Synthesis and Characterization of Lipophilic Salts of Metformin to Improve Its Repurposing for Cancer Therapy. ACS OMEGA 2021; 6:2626-2637. [PMID: 33553880 PMCID: PMC7859945 DOI: 10.1021/acsomega.0c04779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological evidence has accentuated the repurposing of metformin hydrochloride for cancer treatment. However, the extreme hydrophilicity and poor permeability of metformin hydrochloride are responsible for its poor anticancer activity in vitro and in vivo. Here, we report the synthesis and characterization of several lipophilic metformin salts containing bulky anionic permeation enhancers such as caprate, laurate, oleate, cholate, and docusate as counterions. Of various counterions tested, only docusate was able to significantly improve the lipophilicity and lipid solubility of metformin. To evaluate the impact of the association of anionic permeation enhancers with metformin, we checked the in vitro anticancer activity of various lipophilic salts of metformin using drug-sensitive (MYCN-2) and drug-resistant (SK-N-Be2c) neuroblastoma cells as model cancer cells. Metformin hydrochloride showed a very low potency (IC50 ≈ >100 mM) against MYCN-2 and SK-N-Be2c cells. Anionic permeation enhancers showed a considerably higher activity (IC50 ≈ 125 μM to 1.6 mM) against MYCN-2 and SK-N-Be2c cells than metformin. The association of metformin with most of the bulky anionic agents negatively impacted the anticancer activity against MYCN-2 and SK-N-Be2c cells. However, metformin docusate showed 700- to 4300-fold improvement in anticancer potency compared to metformin hydrochloride and four- to five-fold higher in vitro anticancer activity compared to sodium docusate, indicating a synergistic association between metformin and docusate. A similar trend was observed when we tested the in vitro activity of metformin docusate, sodium docusate, and metformin hydrochloride against hepatocellular carcinoma (HepG2) and triple-negative breast cancer (MDA-MB-231) cells.
Collapse
Affiliation(s)
- Hiwa K. Saeed
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Yogesh Sutar
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Pratikkumar Patel
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Roopal Bhat
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
- Department
of Pharmaceutics, Shree Chanakya Education
Society’s Indira College of Pharmacy, Tathawade, Pune, Maharashtra 411033, India
| | - Sudipta Mallick
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Alyssa E. Hatada
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Dana-Lynn T. Koomoa
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Ingo Lange
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Abhijit A. Date
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| |
Collapse
|
8
|
Shrader HR, Miller AM, Tomanek-Chalkley A, McCarthy A, Coleman KL, Ear PH, Mangalam AK, Salem AK, Chan CHF. Effect of bacterial contamination in bile on pancreatic cancer cell survival. Surgery 2020; 169:617-622. [PMID: 33268071 DOI: 10.1016/j.surg.2020.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Introduction of gut flora into the biliary system is common owing to biliary stenting in patients with obstructing pancreatic head cancer. We hypothesize that alteration of biliary microbiome modifies bile content that modulates pancreatic cancer cell survival. METHODS Human bile samples were collected during pancreaticoduodenectomy. Bacterial strains were isolated from contaminated (stented) bile and identified using 16S ribosomal RNA sequencing. Human pancreatic cancer cells (AsPC1, CFPAC, Panc1) were treated for 24 hours with sterile (nonstented) bile, contaminated (stented) bile, and sterile bile preincubated with 106 colony forming unit of live bacteria isolated from contaminated bile or a panel of bile acids for 24 hours at 37°C, and evaluated using CellTiter-Blue Cell Viability Assay (Promega Corp. Madison, WI). Human bile (30-50 μl/mouse) was coinjected intraperitoneally with 105 Panc02 mouse pancreatic cancer cells in C57BL6/N mice to evaluate the impact of bile on peritoneal metastasis 3 to 4 weeks after tumor challenge. RESULTS While all bile samples significantly reduced peritoneal metastasis of Panc02 cells in mice, some contaminated bile samples had diminished antitumor effect. All sterile bile (n = 4) reduced pancreatic cancer cell survival in vitro. Only 40% (2/5) of contaminated bile samples had significant effect. Preincubation of sterile bile with live Enterococcus faecalis or Streptococcus oralis modified the antitumor effect of sterile bile. These changes were not observed with culture media preincubated with live bacteria, suggesting live gut bacteria can modify the antitumor components present in bile. Conjugated bile acids were more potent than unconjugated cholic acid in reducing pancreatic cancer cell survival. CONCLUSION Alteration of bile microbiome from biliary stenting has a direct impact on pancreatic cancer cell survival. Further study is warranted to determine if this microbiome shift alters tumor microenvironment.
Collapse
Affiliation(s)
| | - Ann M Miller
- Department of Surgery, University of Iowa, Iowa City, IA
| | | | - Ashley McCarthy
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Kristen L Coleman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Po Hien Ear
- Department of Surgery, University of Iowa, Iowa City, IA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Carlos H F Chan
- Department of Surgery, University of Iowa, Iowa City, IA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA.
| |
Collapse
|