1
|
Liu H, Kuang H, Wang Y, Bao L, Cao W, Yu L, Qi M, Wang R, Yang X, Ye Q, Ding F, Ren L, Liu S, Ma F, Liu S. MSC-derived exosomes protect auditory hair cells from neomycin-induced damage via autophagy regulation. Biol Res 2024; 57:3. [PMID: 38217055 PMCID: PMC10787390 DOI: 10.1186/s40659-023-00475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/10/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.
Collapse
Affiliation(s)
- Huan Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Huijuan Kuang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiru Wang
- Anesthesiology Department, Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Lili Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanxin Cao
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Lu Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Meihao Qi
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military, Xi'an, Shaanxi, China
| | - Renfeng Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military, Xi'an, Shaanxi, China
| | - Xiaoshan Yang
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qingyuan Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Feng Ding
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lili Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siying Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Furong Ma
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China.
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Tavanai E, Rahimi V, Khalili ME, Falahzadeh S, Motasaddi Zarandy M, Mohammadkhani G. Age-related hearing loss: An updated and comprehensive review of the interventions. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:256-269. [PMID: 38333758 PMCID: PMC10849199 DOI: 10.22038/ijbms.2023.72863.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 02/10/2024]
Abstract
Aging causes progressive degenerative changes in many organs, particularly the auditory system. Several attempts have been conducted to investigate preventive and therapeutic strategy/strategies for age-related auditory dysfunction, such as maintaining a healthy lifestyle through good nutrition, lower anxiety levels, and noise exposure, different pharmacological approaches, gene and cell therapy, and other strategies. However, it is not clear which approach is the best to slow down these dysfunctions because several different underlying mechanistic pathways are associated with presbycusis which eventually leads to different types of this disease. A combination of several methods is probably required, whereas the effectiveness for some people needs to be monitored. The effectiveness of treatments will not be the same for all; therefore, we may need to have a unique and personalized approach to the prevention and treatment of ARHL for each person. In addition, each method needs to specify what type of presbycusis can prevent or treat and provide complete information about the extent, duration of treatment, persistency of treatment, side effects, and whether the approach is for treatment or prevention or even both. This paper reviews the updated literature, which targets current interventions for age-related hearing loss.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Falahzadeh
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Motasaddi Zarandy
- Otolaryngology Research Center, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Devi S, Bongale AM, Tefera MA, Dixit P, Bhanap P. Fresh Umbilical Cord Blood-A Source of Multipotent Stem Cells, Collection, Banking, Cryopreservation, and Ethical Concerns. Life (Basel) 2023; 13:1794. [PMID: 37763198 PMCID: PMC10533013 DOI: 10.3390/life13091794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 09/29/2023] Open
Abstract
Umbilical cord blood (UCB) is a rich source of hematopoietic cells that can be used to replace bone marrow components. Many blood disorders and systemic illnesses are increasingly being treated with stem cells as regenerative medical therapy. Presently, collected blood has been stored in either public or private banks for allogenic or autologous transplantation. Using a specific keyword, we used the English language to search for relevant articles in SCOPUS and PubMed databases over time frame. According to our review, Asian countries are increasingly using UCB preservation for future use as regenerative medicine, and existing studies indicate that this trend will continue. This recent literature review explains the methodology of UCB collection, banking, and cryopreservation for future clinical use. Between 2010 and 2022, 10,054 UCB stem cell samples were effectively cryopreserved. Furthermore, we have discussed using Mesenchymal Stem Cells (MSCs) as transplant medicine, and its clinical applications. It is essential for healthcare personnel, particularly those working in labor rooms, to comprehend the protocols for collecting, transporting, and storing UCB. This review aims to provide a glimpse of the details about the UCB collection and banking processes, its benefits, and the use of UCB-derived stem cells in clinical practice, as well as the ethical concerns associated with UCB, all of which are important for healthcare professionals, particularly those working in maternity wards; namely, the obstetrician, neonatologist, and anyone involved in perinatal care. This article also highlights the practical and ethical concerns associated with private UCB banks, and the existence of public banks. UCB may continue to grow to assist healthcare teams worldwide in treating various metabolic, hematological, and immunodeficiency disorders.
Collapse
Affiliation(s)
- Seeta Devi
- Department of Obstetrics and Gynecological Nursing, Symbiosis College of Nursing, Symbiosis International (Deemed University), Lavale, Pune 412 115, Maharashtra, India;
| | - Anupkumar M. Bongale
- Department of Artificial Intelligence and Machine Learning, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune 412 115, Maharashtra, India
| | | | | | - Prasad Bhanap
- HoD OBG Department, Symbiosis Medical College for Women (SMCW), Symbiosis International (Deemed University), Lavale, Pune 412 115, Maharashtra, India
| |
Collapse
|
4
|
Downregulation of GJB2 and SLC26A4 genes induced by noise exposure is associated with cochlear damage. Mol Biol Rep 2022; 49:7219-7229. [PMID: 35809183 DOI: 10.1007/s11033-022-07291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Noise-induced hearing loss (NIHL) is one the major causes of acquired hearing loss in developed countries. Noise can change the pattern of gene expression, inducing sensorineural hearing impairment. There is no investigation on the effects of noise frequency on the expression of GJB2 and SLC26A4 genes involved in congenital hearing impairment in cochlear tissue. Here we investigated the impacts of white and purple noise on gene expression and pathologic changes of cochlear tissue. METHODS In this study, 32 adult male Westar rats were randomly divided into experimental groups: WN, animals exposed to white noise with a frequency range of 100-20000 Hz; PN, animals exposed to purple noise with a frequency range of 4-20 kHz, and control group, without noise. The experimental groups were exposed to a 118-120 dB sound pressure level for 8 h per 3 days and 6 days. 1 h and 1 week after termination of noise exposure, cochlear tissue was prepared for pathology and gene expression analysis. RESULTS Both white and purple noises caused permanent damage to the cortical, estrosilica systems of hair cells and ganglion of the hearing nerve. GJB2 and SLC26A4 were downregulated in both groups exposed with white and purple noise by increasing the time of noise exposure. However, differences are notably more significant in purple noise, which is more intensified. Also, 1 weak post noise exposure, the downregulation is remarkably higher than 1 h. CONCLUSIONS Our findings suggest that downregulation of GJB2 and SLC26A4 genes are associated with pathological injury in response to noise exposure in cochlear tissue. It would be suggested the demand for assessment of RNA and protein expression of genes involved in noise-induced hearing loss and subsequently the practice of hearing protection programs.
Collapse
|
5
|
Liu SS, Yang R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front Neurosci 2022; 16:867453. [PMID: 35685768 PMCID: PMC9170894 DOI: 10.3389/fnins.2022.867453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Most therapies for treating sensorineural hearing loss are challenged by the delivery across multiple tissue barriers to the hard-to-access anatomical location of the inner ear. In this review, we will provide a recent update on various pharmacotherapy, gene therapy, and cell therapy approaches used in clinical and preclinical studies for the treatment of sensorineural hearing loss and approaches taken to overcome the drug delivery barriers in the ear. Small-molecule drugs for pharmacotherapy can be delivered via systemic or local delivery, where the blood-labyrinth barrier hinders the former and tissue barriers including the tympanic membrane, the round window membrane, and/or the oval window hinder the latter. Meanwhile, gene and cell therapies often require targeted delivery to the cochlea, which is currently achieved via intra-cochlear or intra-labyrinthine injection. To improve the stability of the biomacromolecules during treatment, e.g., RNAs, DNAs, proteins, additional packing vehicles are often required. To address the diverse range of biological barriers involved in inner ear drug delivery, each class of therapy and the intended therapeutic cargoes will be discussed in this review, in the context of delivery routes commonly used, delivery vehicles if required (e.g., viral and non-viral nanocarriers), and other strategies to improve drug permeation and sustained release (e.g., hydrogel, nanocarriers, permeation enhancers, and microfluidic systems). Overall, this review aims to capture the important advancements and key steps in the development of inner ear therapies and delivery strategies over the past two decades for the treatment and prophylaxis of sensorineural hearing loss.
Collapse
Affiliation(s)
- Sophie S. Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Sex Differences in the Triad of Acquired Sensorineural Hearing Loss. Int J Mol Sci 2021; 22:ijms22158111. [PMID: 34360877 PMCID: PMC8348369 DOI: 10.3390/ijms22158111] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.
Collapse
|
7
|
Shah V, Mittal R, Shahal D, Sinha P, Bulut E, Mittal J, Eshraghi AA. Evaluating the Efficacy of Taurodeoxycholic Acid in Providing Otoprotection Using an in vitro Model of Electrode Insertion Trauma. Front Mol Neurosci 2020; 13:113. [PMID: 32760249 PMCID: PMC7372968 DOI: 10.3389/fnmol.2020.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cochlear implants (CIs) are widely used to provide auditory rehabilitation to individuals having severe to profound sensorineural hearing loss (SNHL). However, insertion of electrode leads to inner trauma and activation of inflammatory and apoptotic signaling cascades resulting in loss of residual hearing in implanted individuals. Pharmaceutical interventions that can target these signaling cascades hold great potential for preserving residual hearing by preventing sensory cell damage. Bile salts have shown efficacy in various regions of the body as powerful antioxidants and anti-inflammatory agents. However, their efficacy against inner ear trauma has never been explored. The objective of this study was to determine whether taurodeoxycholic acid (TDCA), a bile salt derivative, can prevent sensory cell damage employing an in vitro model of electrode insertion trauma (EIT). The organ of Corti (OC) explants were dissected from postnatal day 3 (P-3) rats and placed in serum-free media. Explants were divided into control and experimental groups: (1) untreated controls; (2) EIT; (3) EIT+ TDCA (different concentrations). Hair cell (HC) density, analyses of apoptosis pathway (cleaved caspase 3), levels of reactive oxygen species (ROS) as well as inducible nitric oxide synthase (iNOS) activity and Mitochondrial Membrane Potential (MMP) were assayed. Treatment with TDCA provided significant otoprotection against HC loss in a dose-dependent manner. The molecular mechanisms underlying otoprotection involved decreasing oxidative stress, lowering levels of iNOS, and abrogating generation of cleaved caspase 3. The results of the present study suggest that TDCA provides efficient otoprotection against EIT, in vitro and should be explored for developing pharmaceutical interventions to preserve residual hearing post-cochlear implantation.
Collapse
Affiliation(s)
- Viraj Shah
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rahul Mittal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David Shahal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Priyanka Sinha
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Erdogan Bulut
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeenu Mittal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adrien A Eshraghi
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|