1
|
Soliman MM, Tohamy AF, Prince AM, Hussien AM, Nashed MS. The mechanistic pathway induced by fenpropathrin toxicity: Oxidative stress, signaling pathway, and mitochondrial damage. J Biochem Mol Toxicol 2024; 38:e70020. [PMID: 39415699 DOI: 10.1002/jbt.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Fenpropathrin (FNP) is a kind of insecticide and acaricide known as pyrethroid. It is very effective, has a wide range of activities, and works quickly. Internationally, it is commonly considered the most powerful pyrethroid insecticide. Nevertheless, an increasing amount of data indicates a substantial link between Fenpropathrin and adverse effects on nontarget species, including liver toxicity, kidney toxicity, nerve damage, and reproductive toxicity. Oxidative stress plays a vital role in the toxicity of fenpropathrin, in addition to its mechanical mechanism. This study offers a thorough examination of the harmful effects of Fenpropathrin on oxidative and mitochondrial processes, as well as the signaling pathways involved in these effects. The significant impact of oxidative stress emphasizes the toxicity of Fenpropathrin.
Collapse
Affiliation(s)
- Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Abd-Elhakim YM, Mohamed AAR, Noreldin AE, Khamis T, Eskandrani AA, Shamlan G, Alansari WS, Alotaibi BS, Alosaimi ME, Hakami MA, Abuzahrah SS. Fenpropathrin provoked kidney damage via controlling the NLRP3/Caspase-1/GSDMD-mediated pyroptosis: The palliative role of curcumin-loaded chitosan nanoparticles. Toxicol Appl Pharmacol 2024; 484:116869. [PMID: 38382713 DOI: 10.1016/j.taap.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1β (IL-1β), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1β, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 11451, Riyadh 11362, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 34, 21959, Saudi Arabia
| |
Collapse
|
3
|
He S, Qu Q, Chen X, Zhao L, Jiao Z, Wan Z, Kwok HF, Qu S. Downregulation of Ambra1 by altered DNA methylation exacerbates dopaminergic neuron damage in a fenpropathrin-induced Parkinson-like mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115995. [PMID: 38245935 DOI: 10.1016/j.ecoenv.2024.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Fenpropathrin (Fen), a volatile pyrethroid insecticide, is used widely for agricultural applications and has been reported to increase the risk of Parkinson's disease (PD). However, the molecular basis, underlying mechanisms, and pathophysiology of Fen-exposed Parkinsonism remain unknown. Recent studies have revealed epigenetic mechanisms underlying PD-related pathway regulation, including DNA methylation. Epigenetic mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. After whole-genome bisulfite sequencing (WGBS) of midbrain tissues from a Fen-exposed PD-like mouse model, we performed an association analysis of DNA methylation and gene expression. Then we successfully screened for the DNA methylation differential gene Ambra1, which is closely related to PD. The hypermethylation-low expression Ambra1 gene aggravated DA neuron damage in vitro and in vivo through the Ambra1/Parkin/LC3B-mediated mitophagy pathway. We administered 5-aza-2'-deoxycytidine (5-Aza-dC) to upregulate Ambra1 expression, thereby reducing Ambra1-mediated mitophagy and protecting DA neurons against Fen-induced damage. In conclusion, these findings elucidate the potential function of Ambra1 under the regulation of DNA methylation, suggesting that the inhibition of DNA methylation may alleviate Fen-exposed neuron damage.
Collapse
Affiliation(s)
- Songzhe He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Clinic Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Qi Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xi Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Li Zhao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhigang Jiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiting Wan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region 999078, China
| | - Shaogang Qu
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
4
|
Ma J, Xiu W, Diao C, Miao Y, Feng Y, Ding W, Li Y, Sultan Y, Li X. Fenpropathrin induces neurotoxic effects in common carp (Cyprinus carpio L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105644. [PMID: 38072519 DOI: 10.1016/j.pestbp.2023.105644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
Fenpropathrin (FEN) is a synthetic pyrethroid that has been frequently detected in aquatic environments, yet the neurotoxic impacts and underlying mechanisms on nontarget organisms are lacking. In this experiment, common carp were exposed to 0.45 and 1.35 μg/L FEN for 14 d and exhibited abnormal locomotor behaviour. Biochemical and molecular analysis results indicated that FEN altered the contents of tight junction proteins (claudin-1, occludin, and ZO-1), disturbed Na+-K+-ATPase and AChE activities, caused abnormal expression of neurotransmitters (ACh, DA, GABA, 5-HT, and glutamate) and caused histological damage in the brain, suggesting that FEN may damage the blood-brain barrier and induce neurotoxicity in carp. Furthermore, FEN also promoted an increase in ROS, changed SOD and CAT activities, and generally upregulated the contents of MDA, 8-OHdG, and protein carbonyl in the brain, indicating that FEN can induce oxidative stress and cause damage to lipids, DNA, and proteins. Moreover, inflammation-related indicators (TNF-α, IL-1β, IL-6, and IL-10), mitophagy-related genes (PINK1, parkin, ulk1, beclin1, LC3, p62, tfeb, and atg5), and apoptosis-related parameters (p53, bax, bcl-2, caspase-3, caspase-8, and caspase-9) were also significantly changed, suggesting that inflammation, mitophagy, and apoptosis may participate in FEN-induced neurotoxicity in carp. This study refines the understanding of the toxicity mechanism of FEN and thus provides data support for the risk assessment of FEN.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Wenyao Xiu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunyu Diao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yumeng Miao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Wang J, Jia Z, Pan W, Hu J. Crotonis Fructus-induced gut microbiota and serum metabolic disorders in rats. Appl Microbiol Biotechnol 2023; 107:6949-6962. [PMID: 37713114 DOI: 10.1007/s00253-023-12763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Crotonis Fructus (CF), a poisonous traditional laxative, has been used to treat constipation, edema, ascites, and inflammation for more than 2000 years. However, CF possesses toxicity and its toxic mechanism is still unclear. Thus, this research explored the deleterious impacts and underlying mechanisms of CF by evaluating alterations in gut microbiota composition and metabolites. High-throughput sequencing was employed on the 16S rDNA gene to explore the intestinal flora. The untargeted metabolomics method was utilized for evaluating serum metabolomics analysis. The results showed that CF could induce obvious hepatic and gastrointestinal damage by histopathologic morphology of the liver, stomach, duodenum, and colon. According to 16S rDNA sequencing, CF can cause gut microbiota disturbance in rats, and the abundance of opportunistic pathogens such as Clostridia_UCG_014_unclassified increased significantly, while the levels of beneficial bacterial Lactobacillus remarkably declined after CF treatment. Additionally, metabolomics analysis demonstrated that CF may induce toxicity by disrupting the glycerophospholipid metabolism pathway and metabolites such as phosphatidylcholine and phosphatidylethanolamine. Moreover, a correlation study revealed the link between intestinal flora, serum metabolites, and toxicity-related biochemical markers. The results provide a new idea for the research and clinical application of toxic traditional medicine. KEY POINTS: • Crotonis Fructus could affect the gut flora and serum metabolic disruption in SD rats. • Crotonis Fructus could promote the proliferation of harmful bacteria and inhibit beneficial bacteria. • Glycerophospholipid metabolism was disturbed by Crotonis Fructus.
Collapse
Affiliation(s)
- Jiali Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zefei Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Wen Pan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jing Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditonal Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Alqahtani LS, Abd-Elhakim YM, Mohamed AAR, Khalifa NE, Khamis T, Alotaibi BS, Alosaimi M, El-Kholy SS, Abuzahrah SS, ElAshmouny N, Eskandrani AA, Gaber RA. Curcumin-loaded chitosan nanoparticles alleviate fenpropathrin-induced hepatotoxicity by regulating lipogenesis and pyroptosis in rats. Food Chem Toxicol 2023; 180:114036. [PMID: 37714448 DOI: 10.1016/j.fct.2023.114036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
In this study, the probable alleviative role of curcumin (CMN) (50 mg/kg b.wt) or curcumin-loaded chitosan nanoparticle (CLC-NP) (50 mg/kg b.wt) was assessed against the hepatotoxic effect of a widely used pyrethroid insecticide, fenpropathrin (FEN) (15 mg/kg b.wt) in rats in a 60-day experiment. The results revealed that CMN and CLC-NP significantly suppressed the FEN-induced increment in serum hepatic enzyme activities (ALT, AST, and ALP) and hyperbilirubinemia. Moreover, FEN-associated dyslipidemia, hepatic oxidative stress, and altered hepatic histology were significantly rescued by CMN and CLC-NP. Furthermore, the increased TNF-α and Caspase-3 immunoexpression in hepatic tissues of FEN-exposed rats was significantly reduced in CMN and CLC-NP-treated ones. FEN exposure significantly upregulated the pyroptosis-related genes, including GSDMD, Casp-1, Casp-3, Casp-8, IL-18, TNF-α, IL-1β, and NF-κB and altered the expression of lipogenesis-related genes including SREBP-1c, PPAR-α, MCP1, and FAS in the hepatic tissues. Nevertheless, the earlier disturbances in gene expression were corrected in CMN and CLC-NP-treated groups. Of note, compared to CMN, CLC-NP was more effective at inhibiting oxidative damage and controlling lipogenesis and pyroptosis in the hepatic tissues of FEN-exposed rats. Conclusively, the current study findings proved the superior and useful role of CLC-NP in combating pollutants associated with hepatic dysfunction.
Collapse
Affiliation(s)
- Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sanad S El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, 21959, Saudi Arabia
| | - Naira ElAshmouny
- Histology and Cell biology, Faculty of Medicine, Kafr Elsheikh University, Egypt
| | - Areej Adeeb Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, 30002, Saudi Arabia
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
7
|
Sha W, Wang Y, Cai F, Zhang C, Wang C, Chen J, Liu C, Wang R, Gao P. Regional distribution of the plastic additive tris(butoxyethyl) phosphate in Nanyang Lake estuary, China, and toxic effects on Cyprinus carpio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53566-53576. [PMID: 36862296 DOI: 10.1007/s11356-023-26168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
There is increasing concern regarding the toxicological effects of plastic additives on humans and aquatic organisms. This study investigated effects of the plastic additive tris(butoxyethyl) phosphate (TBEP) on Cyprinus carpio by measuring concentration distribution of TBEP in the Nanyang Lake estuary, as well as toxic effects of varying doses of TBEP exposure on carp liver. This also included measuring responses of superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cysteinyl aspartate-specific protease (caspase). Concentrations of TBEP in the polluted water environment (water company inlets, urban sewage pipes, etc.) in the survey area were as high as 76.17-3875.29 μg/L, and 3.12 μg/L in the river flowing through the urban area, and 1.18 μg/L in the estuary of the lake. In the subacute toxicity test, SOD activity in liver tissue with an increase in TBEP concentration was reduced significantly, while the MDA content continued to increase with an increase in TBEP concentration. Inflammatory response factors (TNF-α and IL-1β) and apoptotic proteins (caspase-3 and caspase-9) gradually increased with increasing concentrations of TBEP. Additionally, reduced organelles, increased lipid droplets, swelling of mitochondria, and disorder of mitochondrial cristae structure were observed in liver cells of TBEP-treated carp. Generally, TBEP exposure induced severe oxidative stress in carp liver tissue, resulting in release of inflammatory factors and inflammatory response, mitochondrial structure changes, and the expression of apoptotic proteins. These findings benefit our understanding about the toxicological effects of TBEP in aquatic pollution.
Collapse
Affiliation(s)
- Weilai Sha
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Ying Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Fengsen Cai
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chen Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Junfeng Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
| |
Collapse
|
8
|
Yu T, Xu X, Mao H, Han X, Liu Y, Zhang H, Lai J, Gu J, Xia M, Hu C, Li D. Fenpropathrin exposure induces neurotoxicity in zebrafish embryos. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1539-1554. [PMID: 36266516 DOI: 10.1007/s10695-022-01134-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Fenpropathrin has been a commonly used insecticide to control agricultural and household insects over a few decades. Up to now, fenpropathrin residue in soil and water has been often determined due to its widespread use, which poses serious threat to environment and aquatic organisms. The potential of fenpropathrin to affect aquatic lives is still poorly understood. In this study, we used zebrafish (Danio rerio) embryo as an experimental model system to evaluate the toxicity of fenpropathrin to the development of zebrafish nervous system. Zebrafish embryos were separately exposed to fenpropathrin at the dose of 0.016 mg/L, 0.032 mg/L, 0.064 mg/L, starting at 6 h post-fertilizationhpf (hpf) up to 96 hpf. The results showed that fenpropathrin exposure gives rise to physiological, behavioral, and neurodevelopmental impairments in zebrafish embryos, including enhanced acetylcholinesterase (AChE) activity, abnormal swimming behavior, karyopyknosis in brain cells, increased intercellular space, and uneven migration of neuron in brain area. In addition, the expressions of genes concerning neurodevelopment and neurotransmitter system were inhibited following fenpropathrin exposure. We also found that fenpropathrin exposure distinctly induced oxidative stress by increasing reactive oxygen species (ROS) generation and inhibiting the production of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Expectedly, some apoptosis-associated genes were induced and the apoptosis appeared in the brain and heart cells of zebrafish embryos. Moreover, fenpropathrin exposure also inhibited the expressions of genes in Nrf2 signaling pathway, such as heme oxygenase-1 (HO-1) and SOD. In summary, the results of this study indicate that oxidative stress-triggered apoptosis may be an underlying fundamental of fenpropathrin-induced neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xue Han
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jingli Lai
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jianfeng Gu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Mengling Xia
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Dongming Li
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
- School of Basic Medical Sciences, Fuzhou Medical College, Nanchang University, Fuzhou, 344000, Jiangxi, China.
| |
Collapse
|
9
|
Xu L, Shen W, Liu Y, Zhang M, Yang Y, Yin D. Fenpropathrin increases gliquidone absorption via causing damage to the integrity of intestinal barrier. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113882. [PMID: 35841655 DOI: 10.1016/j.ecoenv.2022.113882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Fenpropathrin is a commonly used pesticide, which was ingested by humans through diet and water. Gliquidone is a common hypoglycemic drug that diabetic patients need for long-term use. This study aimed to investigate the effects of long-term exposure to fenpropathrin on the intestinal barrier and intestinal absorption of the model drug gliquidone. The Ussing Chamber study had shown that fenpropathrin can increase the transport of gliquidone in an isolated intestinal model. In addition, the intestinal absorption of fluorescein was significantly increased in fenpropathrin-exposed rats administered by gavage. Further research suggested that fenpropathrin exposure caused a series of pathological effects: the structure of the intestine was damaged, the expression of tight junction proteins in the intestinal tissue was decreased, the intestinal MDA was increased, the SOD was decreased, and the expression of inflammatory factors was increased. In the Caco-2 cell model, it was found that fenpropathrin can increase the transport of gliquidone in the Caco-2 cell monolayer, reduce the expression of tight junction proteins and increase reactive oxygen species in Caco-2 cells. Fenpropathrin exposure also resulted in decreasing expression of PPAR-γ and UCP-2 in intestinal tissue and Caco-2 cell model, while causing increased expression of p-P38. The above results indicated that fenpropathrin exposure could induce oxidative stress and destroy the intestinal barrier by affecting the expression of p-P38/P38/PPAR-γ/UCP-2 protein, thereby increasing the intestinal absorption of gliquidone. This study provides new insights into the hazards of fenpropathrin residues in the environment.
Collapse
Affiliation(s)
- Li Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China
| | - Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mingyan Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department(AUCM), Hefei 230012, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department(AUCM), Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.
| |
Collapse
|
10
|
Ravula AR, Yenugu S. Effect of a mixture of pyrethroids at doses similar to human exposure through food in the Indian context. J Biochem Mol Toxicol 2022; 36:e23132. [PMID: 35678313 DOI: 10.1002/jbt.23132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 11/11/2022]
Abstract
Residual amounts of pyrethroids were detected in rice and vegetables of the Indian market. Thus, consumers are exposed to a mixture of pyrethroids on a daily basis through food. Though a large number of studies reported the toxic effects of pyrethroids, there are no reports that used doses equivalent to human consumption. In this study, male Wistar rats were exposed daily to a mixture of pyrethroids for 1-15 months which is equivalent to the amount present in rice and vegetables consumed by an average Indian each day. The oxidant-antioxidant status (lipid peroxidation, nitric oxide; activities of catalase, glutathione peroxidase, glutathione S transferase, and superoxide dismutase) and anatomical changes in the general organs (liver, lung, and kidney) and male reproductive tract tissues (caput, cauda, testis, and prostate) were evaluated. Further, liver and kidney function tests, lipid profile, and complete blood picture were analyzed. Increased oxidative stress, perturbations in the antioxidant enzyme activities, and damage to the anatomical architecture were observed. Disturbances in the liver function and lipid profile were significant. Results of our study demonstrate that exposure to a mixture of pyrethroids at a dose that is equivalent to human consumption can cause systemic and reproductive toxicity, which may ultimately result in the development of lifestyle diseases. This first line of evidence will fuel further studies to determine the impact of food-based pyrethroid exposure on the long-term health of humans and to envisage policies to reduce pesticide content in food products.
Collapse
Affiliation(s)
- Anandha R Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
11
|
The Effect of Subacute Poisoning with Deltamethrin on the Levels of Interleukin 1ß and Tumour Necrosis Factor Α in the Livers and Kidneys of Mice. POLISH HYPERBARIC RESEARCH 2022. [DOI: 10.2478/phr-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Deltamethrin is a type II pyrethroid. Deltamethrin’s action is characterised by nephrotoxicity, hepatotoxicity and immunotoxicity.
The aim of the study was to evaluate the effect of poisoning with deltamethrin on the levels of interleukin1ß and TNFα in the livers and kidneys of mice.
A total of 24 female mice were divided into 3 groups of 8:
- controls,
- receiving deltamethrin i.p. at the dose of 41.5 mg/kg for 28 days
- receiving deltamethrin i.p. at the dose of 8.3 mg/kg for 28 days.
On day 29 the animals were euthanised, livers and kidneys were obtained, homogenised and centrifuged. The supernatant was used for measuring IL-1ß and TNFα concentration with ELISA tests. The results were analysed with Statsoft Statistica.
The interleukin 1ß concentrations were significantly higher in the kidneys (18.30±16.85) of mice exposed to the higher dose of deltamethrin than in the controls (8.15±4.66) (p<0.05). In the livers of mice receiving 41.5mg/kg deltamethrin it was 203±71.63 vs 46.77±34.79 (p<0.05). In the livers of animals receiving the lower dose it was higher than in the control group (96.51±24.73) (p<0.05). The TNF α was elevated in the kidneys of mice exposed to the higher dose of deltamethrin (6.56±3.26 vs 2.89±1.57)(p<0.05).
Conclusion: Deltamethrin produces a significant increase of interleukin 1ß in the livers and kidneys of mice and so the cytokine seems to be a good marker of hepatotoxicity and nephrotoxicity in the course of subacute poisoning.
Collapse
|
12
|
Zoofaghari S, Namakizadeh Esfahani N, Akhavan Sigari A, Tavakoli N, Hashemzadeh M, Eizadi‐Mood N. Uncommon manifestation of poisoning with a mixture of pesticides. Clin Case Rep 2022; 10:e05365. [PMID: 35154719 PMCID: PMC8819642 DOI: 10.1002/ccr3.5365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
The ingestion of pesticides for suicide commitment purposes is common in developing countries. We present a case of suicide with ingestion of mixed pesticides. The autopsy findings showed the presence of diazinon, chlorpyrifos, trifluralin, fenpropathrin, pyriproxyfen, and cypermethrin in his body. Clinicians managing poisoning cases need to be aware of poisoning with mixture of pesticides as a rare but highly fatal outcome.
Collapse
Affiliation(s)
- Shafeajafar Zoofaghari
- Isfahan Clinical Toxicology Research CenterDepartment of Clinical ToxicologyIsfahan University of Medical SciencesIsfahanIran
| | | | | | - Nasim Tavakoli
- Isfahan Clinical Toxicology Research CenterDepartment of Clinical ToxicologyIsfahan University of Medical SciencesIsfahanIran
| | - Mozhdeh Hashemzadeh
- Clinical Informationist Research GroupHealth Information Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Nastaran Eizadi‐Mood
- Isfahan Clinical Toxicology Research CenterDepartment of Clinical ToxicologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
13
|
Pylak-Piwko O, Nieradko-Iwanicka B. Subacute poisoning with bifenthrin increases the level of interleukin 1ß in mice kidneys and livers. BMC Pharmacol Toxicol 2021; 22:21. [PMID: 33902677 PMCID: PMC8077818 DOI: 10.1186/s40360-021-00490-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background Bifenthrin is a pyrethroid. Chronic exposure of humans to the pesticide occurs. Reports about immunotoxicity and proinflammatory effect of pyrethroids were published. The aim of the article was to check if subacute poisoning with bifenthrin affects proinflammatory interleukin 1ß and tumor necrosis factorα (TNFα) in kidneys, livers and the function of these organs. Methods Thirty two female mice were used. They were divided into 4 groups: controls, mice receiving 1.61 mg/kg bifenthrin for 28 days (group 1), 4.025 mg/kg (2), 8.05 mg/kg (3). On day 29 they were sacrificed, blood, livers and kidneys were obtained. Creatinine concentration and alanine transaminase (ALT) activity were estimated in the blood sera. Interleukin1ß and TNFα concentrations in the organs were measured. Result Mean interleukin 1ß concentration in the livers of controls was 53 pg/ml, in group 1- 54 pg/ml, 2- 59 pg/ml, 3- 99 pg/ml (p < 0.05 vs controls). It was accompanied by significant increase in ALT activity in group 3 vs controls (p < 0.05). In the control kidneys interleukin 1ß was 3.9 pg/ml, group 1–6.8 pg/ml, 2–9.8 pg/ml and 3- 11 pg/ml. Statistically significant difference between group 1, 2 and 3 vs controls was found. There was no significant differences among the groups in TNFα concentrations neither in the livers nor kidneys. Conclusion Subacute poisoning with bifenthrin significantly increases interleukin 1ß concentration in livers and kidneys in a dose-proportionate level. It is accompanied by ALT activity increase. It confirms nephrotoxic and hepatotoxic and pro-inflammatory effect of bifenthrin in non-target organisms.
Collapse
Affiliation(s)
- Oktawia Pylak-Piwko
- Center of Oncology of the Lublin Region St. John from Dukla, Jaczewski Street 7, 20-090, Lublin, Poland
| | - Barbara Nieradko-Iwanicka
- Chair and Department of Hygiene, Medical University of Lublin, Radziwillowska Street 11, 20-080, Lublin, Poland.
| |
Collapse
|
14
|
Ravula AR, Yenugu S. Effect of oral administration of a mixture of pyrethroids at doses relevant to human exposure on the general and male reproductive physiology in the rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111714. [PMID: 33396045 DOI: 10.1016/j.ecoenv.2020.111714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Studies on the effects of unintentional intake of pyrethroid pesticides that are akin to actual human exposure settings are very rare. Such an exposure is primarily by consuming the food products as routine diet that contain residual levels of pyrethroids. In this study, rats were orally administered for 15 months with a mixture of pyrethroids at a dose that is one-fifth (high dose; HD) or one-twenty fifth (low dose; LD) of the residual levels commonly present in the average amount of rice and vegetables consumed by Indian population. Lipid profile, kidney and liver function were assessed. Lipid peroxidation, nitric oxide, antioxidant enzyme activities and histopathological changes were analyzed in the liver, lung, kidney, pancreas, testes, caput, cauda and prostate. The effect on the male reproductive system as a function of sperm count, enzyme activity of 3β-HSD and 17β-HSD and the expression profile of genes involved in spermatogenesis, steroidogenesis, genetic reprogramming and apoptosis of male gametes were evaluated. Significant increase in the relative organ weight, perturbations in the activities of antioxidant enzymes, lipid profile and liver function were observed in both LD and HD groups. Damage to the anatomical architecture was evident in all the tissues due to pyrethroid toxicity. Exposure to LD and HD of pyrethroid mixture resulted in decreased sperm count, activities of 3β-HSD and 17β-HSD, impaired capacitation and acrosome reaction and perturbations in the expression of genes that govern male gamete production. Results of our study indicate that exposure to pyrethroids for longer durations even at doses that are far below the residual levels present in the food consumed will result in severe damage to general physiological processes as well as reproductive function.
Collapse
Affiliation(s)
- Anandha Rao Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|