1
|
Shi T, Hou C, Duan Y, Li Y, Liu W, Huang P, Zhou Y, Yu S, Song L. Mechanism of Smilax china L. in the treatment of intrauterine adhesions based on network pharmacology, molecular docking and experimental validation. BMC Complement Med Ther 2024; 24:150. [PMID: 38580999 PMCID: PMC10996135 DOI: 10.1186/s12906-024-04414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Smilax china L. (SCL) is a traditional herbal medicine for the potential treatment of intrauterine adhesion (IUA). However, the mechanisms of action have not yet been determined. In this study, we explored the effects and mechanisms of SCL in IUA by network pharmacology, molecular docking and molecular biology experiments. METHODS Active ingredients and targets of SCL were acquired from TCMSP and SwissTargetPrediction. IUA-related targets were collected from the GeneCards, DisGeNET, OMIM and TTD databases. A protein‒protein interaction (PPI) network was constructed by Cytoscape 3.9.1 and analysed with CytoHubba and CytoNCA to identify the core targets. The DAVID tool was used for GO and KEGG enrichment analyses. Furthermore, molecular docking was employed to assess the interaction between the compounds and key targets. Finally, the mechanisms and targets of SCL in IUA were verified by cellular experiments and western blot. RESULTS A total of 196 targets of SCL were identified, among which 93 were related to IUA. Topological and KEGG analyses results identified 15 core targets that were involved in multiple pathways, such as inflammation, apoptosis, and PI3K/AKT signalling pathways. Molecular docking results showed that the active compounds had good binding to the core targets. In vitro experiments showed that astilbin (AST), a major component of SCL, significantly reduced TGF-β-induced overexpression of fibronectin (FN), activation of the PI3K/AKT signalling pathway and the expression of downstream factors (NF-κB and BCL2) in human endometrial stromal cells, suggesting that AST ameliorates IUA by mediating the PI3K/AKT/NF-κB and BCL2 proteins. CONCLUSIONS AST, a major component of SCL, may be a potential therapeutic agent for IUA. Moreover, its mechanism is strongly associated with regulation of the PI3K/AKT signalling pathway and the downstream NF-κB and BCL2 proteins. This study will provide new strategies that utilize AST for the treatment of IUA.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Chuqi Hou
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongzhen Duan
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Yuliang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Wenqin Liu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peixian Huang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Yuhua Zhou
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China.
| | - Luyao Song
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
2
|
Hong J, Ahn H, Moon SY, Kang HJ, Yi KW. Effect of collagen endometrial patch loaded with adipose-derived mesenchymal stem cells on endometrial regeneration in rats with a thin endometrium. Front Endocrinol (Lausanne) 2023; 14:1287789. [PMID: 38089603 PMCID: PMC10714005 DOI: 10.3389/fendo.2023.1287789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Background This study aimed to investigate the effects of a collagen endometrial patch (EM patch) loaded with adipose-derived mesenchymal stem cells (ADSCs) on endometrial regeneration in a rat model with thin endometrium. Materials and methods Thin endometrium was induced in female rats and divided into treatment groups as outlined: control, group 1(G1), local injection of ADSCs into the uterus, group 2 (G2), an EM patch without ADSCs, group 3 (G3), and an EM patch loaded with ADSCs, group 4 (G4). The rats were euthanized at either two weeks or four weeks after modeling and treatment followed by histological and biochemical analyses to examine the regenerative effects on the injured endometrium. Results Transplantation of the ADSC-loaded EM patch significantly promoted endometrial proliferation and increased the luminal epithelial area. Two weeks after treatment, the mean number of von Villebrand factor (vWF)+ or cluster of differentiation (CD) 31+-stained blood vessels was significantly higher in G4 than in G1 and G2. The mRNA and protein expression levels of TGF-β and FGF2 were significantly upregulated in G4 compared to those in the control. G4 exhibited significantly increased LIF mRNA levels and immunoreactivity compared with the other groups at both two weeks and four weeks after treatment. Cell tracking after ADSCs treatment revealed the presence of a substantial number of ADSCs grafted in the uterine tissues of G4, whereas a low number of ADSCs that were focally clustered were present in G2. Conclusion Transplantation of EM patches loaded with ADSCs resulted in the histological and biochemical restoration of an injured endometrium. The strategic integration of EM patches and ADSCs holds significant promise as an innovative therapeutic approach for effectively treating impaired endometrial conditions.
Collapse
Affiliation(s)
- Juyeon Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyojin Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo Young Moon
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Hyo Jin Kang
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Kyong Wook Yi
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Rizano A, Margiana R, Supardi S, Narulita P. Exploring the future potential of mesenchymal stem/stromal cells and their derivatives to support assisted reproductive technology for female infertility applications. Hum Cell 2023; 36:1604-1619. [PMID: 37407748 DOI: 10.1007/s13577-023-00941-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Women's infertility impacts the quality of life of both patients and couples and has multifaceted dimensions that increase the number of challenges associated with female infertility and how to face them. Female reproductive disorders, such as premature ovarian failure (POF), endometriosis, Asherman syndrome (AS), polycystic ovary syndrome (PCOS), and preeclampsia, can stimulate infertility. In the last decade, translational medicine has advanced, and scientists are focusing on infertility therapy with innovative attitudes. Recent investigations have suggested that stem cell treatments could be safe and effective. Stem cell therapy has established a novel method for treating women's infertility as part of a regeneration approach. The chief properties and potential of mesenchymal stem/stromal cells (MSCs) in the future of women's infertility should be considered by researchers. Due to their high abundance, great ability to self-renew, and high differentiation capacity, as well as less ethical concerns, MSC-based therapy has been found to be an effective alternative strategy to the previous methods for treating female infertility, such as intrauterine insemination, in vitro fertilization, medicines, and surgical procedures. These types of stem cells exert their beneficial role by releasing active mediators, promoting cell homing, and contributing to immune modulation. Here we first provide an overview of MSCs and their crucial roles in both biological and immunological processes. The next large chapter covers current preclinical and clinical studies on the application of MSCs to treat various female reproductive disorders. Finally, we deliberate on the extant challenges that hinder the application of MSCs in female infertility and suggest plausible measures to alleviate these impediments.
Collapse
Affiliation(s)
- Andrew Rizano
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Indonesia General Academic Hospital, Depok, Indonesia.
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia.
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pety Narulita
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
4
|
Liu X, Li J, Wang W, Ren X, Hu JF. Therapeutic restoration of female reproductive and endocrine dysfunction using stem cells. Life Sci 2023; 322:121658. [PMID: 37023951 DOI: 10.1016/j.lfs.2023.121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Millions of women worldwide suffer from infertility associated with gynecologic disorders such as premature ovarian insufficiency, polycystic ovary syndrome, Asherman syndrome, endometriosis, preeclampsia, and fallopian tube obstruction. These disorders can lead to infertility and thereby affect the quality of life of the infertile couple because of their psychological impact and significant costs. In recent years, stem cell therapy has emerged as a therapeutic approach to repair or replace damaged tissues or organs. This review describes the recent development as well as the underlying mechanisms of stem cell therapy for a variety of female reproductive diseases, offering us new therapeutic options for the treatment of female reproductive and endocrine dysfunction.
Collapse
Affiliation(s)
- Xiaobo Liu
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Jiajia Li
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China; Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Wenjun Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Ren
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
5
|
Repairing and Regenerating Injured Endometrium Methods. Reprod Sci 2023; 30:1724-1736. [PMID: 36653588 DOI: 10.1007/s43032-022-01108-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/08/2022] [Indexed: 01/19/2023]
Abstract
Good endometrium is the prerequisite and guarantee for reproduction and maternal and child health. Endometrial injury caused by operation or non-operation can lead to menstrual irregularities, amenorrhea, abortion, infertility, and other gynecological diseases to bother women. Intrauterine adhesions (IUA) and thin endometrium are common diseases caused by abnormal repair after endometrium damage. The incidence of IUA is not low after uterine operative surgery, and the recurrence is pretty high after uterine adhesiolysis. At present, there were many methods for endometrial repair in clinic or in the laboratory, but the efficacy was different from methods to methods. They are mainly including estrogen therapy, stem cell therapy, complementary medicine therapy, and some physical barrier therapy. In order to guide the effective repair and regeneration of endometrium in clinic, this paper reviews the merit and demerit of these methods for endometrium regeneration and repair that have been proved to be effective in experiments and clinical in recent years.
Collapse
|
6
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
7
|
A review of the effects of estrogen and epithelial-mesenchymal transformation on intrauterine adhesion and endometriosis. Transpl Immunol 2022; 79:101679. [PMID: 35908631 DOI: 10.1016/j.trim.2022.101679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022]
Abstract
Uterus transplantation has become an option for women suffering from some form of infertility. Current review discusses key physiological functions of the endometrium requiring the transition of tissue cells between the mesenchyme and epithelial cell phenotype, a process known as epithelial-mesenchymal transition (EMT). Estrogen and EMT play a key role in the pathogenesis and treatment of intrauterine adhesion and endometriosis. There is also a close regulatory relationship between estrogen and EMT, and investigation of this relationship is of great significance for the treatment of endometrial disorders. The present review discusses the effects of estrogen on endometrial dysfunction, with a focus on the relationship between estrogen and EMT in endometrial disorders, taking into consideration the mechanisms by which receptors that regulate their functions and proteins that regulate their local biological functions interact with the factors involved in EMT. In addition, the review summarizes emerging drugs targeting receptors or proteins and provides information on the direction of new therapies for endometrial disorders.
Collapse
|
8
|
Shen M, Duan H, Lv R, Lv C. Efficacy of autologous platelet-rich plasma in preventing adhesion reformation following hysteroscopic adhesiolysis: a randomized controlled trial. Reprod Biomed Online 2022; 45:1189-1196. [DOI: 10.1016/j.rbmo.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022]
|
9
|
Wu L, Wang Z, Hou Z, Zheng L, Gu Z. Exosomal MicroRNA-23-5p Derived from Bone Marrow Mesenchymal Stem Cells Relieves Inflammatory Response in Rheumatoid Arthritis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to explore the mechanism underlying microRNA-23-5p from exosomes (exo-miR-23-5p) of BMSCs in rheumatoid arthritis (RA). The candidate related genes of miR-23-5p were screened in RA by bioinformatics analysis through gain- and loss-function method along with analysis of histopathological
changes in mice and RAC2 expression as well as the level of pro-inflammatory factors. In vivo RA model was established to detect miR-23-5p’s effect on RA. miR-23-5p level was significantly reduced in RA cells and RAC2 was highly expressed. Expression of RAC2 was inhibited and
targeted by miR-23-5p in RA. Exo-miR-23-5p treatment effectively alleviated joint destruction, reduced inflammatory factor secretion in tissues and serum, as well as decreased RAC2 expression in RA model. In conclusion, the miR-23-5p in the BMSC-exo delays the inflammatory response in RA,
indicating that it might be a new target for treating RA.
Collapse
Affiliation(s)
- Liangbang Wu
- Department of Orthopaedics, The 903 Hospital of the Chinese People’s Liberation Army, Hangzhou, Zhejiang, 310004, China
| | - Zui Wang
- Department of Orthopaedics, The 903 Hospital of the Chinese People’s Liberation Army, Hangzhou, Zhejiang, 310004, China
| | - Zhenhai Hou
- Department of Orthopaedics, The 903 Hospital of the Chinese People’s Liberation Army, Hangzhou, Zhejiang, 310004, China
| | - Longbao Zheng
- Department of Orthopaedics, The 903 Hospital of the Chinese People’s Liberation Army, Hangzhou, Zhejiang, 310004, China
| | - Zenghui Gu
- Department of Orthopaedics, The 903 Hospital of the Chinese People’s Liberation Army, Hangzhou, Zhejiang, 310004, China
| |
Collapse
|
10
|
Zhang J, Gao Y, Chen P, Zhou Y, Guo S, Wang L, Chen J. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs)-Exosome Carrying MiRNA-312 Inhibits Sevoflurane-Induced Cardiomyocyte Apoptosis Through Activation of Phosphatidylinositol 3-Kinase/Protein Kinase B (PI3K/AKT) Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was to explore the mechanism by how exosomes (exo) derived from BMSCs affects cardiomyocyte apoptosis. BMSCs were isolated and incubated with cardiomyocytes while the cardiomyocytes were exposed to sevoflurane or DMSO treatment. Apoptotic cells were calculated and level of
apoptosis related proteins was detected by Western blot. Through transfection with microRNA-(miRNA)-312 inhibitor, we evaluated the effect of BMSC-exo on the sevoflurane-induced apoptosis. Sevoflurane significantly inhibited the viability of cardiomyocytes and induced cardiomyocyte apoptosis.
Besides, sevoflurane decreased the expression of miR-312 and enhanced Bax expression in cardiomyocytes through restraining the phosphorylation of MAPK/ERK. Treatment with BMSC-exo, however, activated MAPK/ERK signaling by up-regulating miR-312, thereby inhibiting cardiomyocyte apoptosis, promoting
cardiomyocyte proliferation, and elevating the level of Bcl-2. In conclusion, BMSC-exo-derived miR-312 inhibits sevoflurane-induced cardiomyocyte apoptosis by activating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiovascular, The People’s Hospital of Rongchang District, Chongqing, 402460, PR China
| | - Yuying Gao
- Department of Cardiovascular, The People’s Hospital of Rongchang District, Chongqing, 402460, PR China
| | - Peng Chen
- Department of Cardiovascular, The People’s Hospital of Rongchang District, Chongqing, 402460, PR China
| | - Yu Zhou
- Department of Cardiovascular, The People’s Hospital of Rongchang District, Chongqing, 402460, PR China
| | - Sheng Guo
- Department of Cardiovascular, The People’s Hospital of Rongchang District, Chongqing, 402460, PR China
| | - Li Wang
- Department of Cardiovascular, The People’s Hospital of Rongchang District, Chongqing, 402460, PR China
| | - Jie Chen
- Department of Cardiovascular, The People’s Hospital of Rongchang District, Chongqing, 402460, PR China
| |
Collapse
|
11
|
Huang J, Zhang W, Yu J, Gou Y, Liu N, Wang T, Sun C, Wu B, Li C, Chen X, Mao Y, Zhang Y, Wang J. Human amniotic mesenchymal stem cells combined with PPCNg facilitate injured endometrial regeneration. Stem Cell Res Ther 2022; 13:17. [PMID: 35022063 PMCID: PMC8756707 DOI: 10.1186/s13287-021-02682-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/14/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Caused by the injury to the endometrial basal layer, intrauterine adhesions (IUA) are characterized by uterine cavity obliteration, leading to impaired fertility. Human amniotic mesenchymal stem cells (hAMSCs) have the potential to promote endometrial regeneration mainly through paracrine ability. PPCNg is a thermoresponsive biomaterial consisted of Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin, which has been reported as a scaffold for stem cell transplantation. This study aims to investigate the therapeutic effect of hAMSCs combined with PPCNg transplantation in promoting the regeneration of injured endometrium. METHODS hAMSCs were cultured in different concentrates of PPCNg in vitro, and their proliferation, apoptosis and cell cycle were examined by CCK-8 assay and flow cytometry. Immunofluorescence was used to determine the MSCs specific surface markers. The expression of pluripotent genes was analyzed by qRT-PCR. The multiple-lineage differentiation potential was further evaluated by detecting the differentiation-related genes using qRT-PCR and specific staining. The Sprague-Dawley (SD) rat IUA model was established with 95% ethanol. hAMSCs combined with PPCNg were transplanted through intrauterine injection. The retention of DiR-labeled hAMSCs was observed by vivo fluorescence imaging. The endometrium morphology was assessed using hematoxylin and eosin (H&E) and Masson staining. Immunohistochemistry staining was performed to detect biomarkers related to endometrial proliferation, re-epithelialization, angiogenesis and endometrial receptivity. The function of regenerated endometrium was evaluated by pregnancy tests. RESULTS hAMSCs maintained normal cell proliferation, apoptosis and cell cycle in PPCNg. Immunofluorescence and qRT-PCR showed that hAMSCs cultured in PPCNg and hAMSCs cultured alone expressed the same surface markers and pluripotent genes. hAMSCs exhibited normal multilineage differentiation potential in PPCNg. Vivo fluorescence imaging results revealed that the fluorescence intensity of hAMSCs combined with PPCNg intrauterine transplantation was stronger than that of direct hAMSCs intrauterine transplantation. Histological assays showed the increase in the thickness of endometrial and the number of endometrial glands, and the remarkably decrease in the fibrosis area in the PPCNg/hAMSCs group. The expressions of Ki-67, CK7, CK19, VEGF, ER and PR were significantly increased in the PPCNg/hAMSCs group. Moreover, the number of implanted embryos and pregnancy rate were significantly higher in the PPCNg/hAMSCs group than in the hAMSCs group. CONCLUSIONS PPCNg is suitable for growth, phenotype maintenance and multilineage differentiation of hAMSCs. hAMSCs combined with PPCNg intrauterine transplantation can facilitate the regeneration of injured endometrium by improving utilization rates of hAMSCs, and eventually restore reproductive capacity.
Collapse
Affiliation(s)
- Jiayue Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Jie Yu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yating Gou
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Nizhou Liu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Tingting Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Benyuan Wu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Changjiang Li
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Xinpei Chen
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yanhua Mao
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yingfeng Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Jia Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China.
| |
Collapse
|
12
|
Wiśniewska J, Sadowska A, Wójtowicz A, Słyszewska M, Szóstek-Mioduchowska A. Perspective on Stem Cell Therapy in Organ Fibrosis: Animal Models and Human Studies. Life (Basel) 2021; 11:life11101068. [PMID: 34685439 PMCID: PMC8538998 DOI: 10.3390/life11101068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
Tissue fibrosis is characterized by excessive deposition of extracellular matrix (ECM) components that result from the disruption of regulatory processes responsible for ECM synthesis, deposition, and remodeling. Fibrosis develops in response to a trigger or injury and can occur in nearly all organs of the body. Thus, fibrosis leads to severe pathological conditions that disrupt organ architecture and cause loss of function. It has been estimated that severe fibrotic disorders are responsible for up to one-third of deaths worldwide. Although intensive research on the development of new strategies for fibrosis treatment has been carried out, therapeutic approaches remain limited. Since stem cells, especially mesenchymal stem cells (MSCs), show remarkable self-renewal, differentiation, and immunomodulatory capacity, they have been intensively tested in preclinical studies and clinical trials as a potential tool to slow down the progression of fibrosis and improve the quality of life of patients with fibrotic disorders. In this review, we summarize in vitro studies, preclinical studies performed on animal models of human fibrotic diseases, and recent clinical trials on the efficacy of allogeneic and autologous stem cell applications in severe types of fibrosis that develop in lungs, liver, heart, kidney, uterus, and skin. Although the results of the studies seem to be encouraging, there are many aspects of cell-based therapy, including the cell source, dose, administration route and frequency, timing of delivery, and long-term safety, that remain open areas for future investigation. We also discuss the contemporary status, challenges, and future perspectives of stem cell transplantation for therapeutic options in fibrotic diseases as well as we present recent patents for stem cell-based therapies in organ fibrosis.
Collapse
|
13
|
Wang X, Zheng J, Wen D, Li C, Li X. MiR-153 Enriched in Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promotes Chemotherapy Sensitivity of Papillary Thyroid Carcinoma. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study assesses the effect of bone marrow mesenchymal stem cells (BMSCs) exosomes miR-153 on papillary thyroid carcinoma (PTC). Adipogenesis and osteogenic induction of MSCs was performed and labeled with Cy5 labeled miR inhibitor. Cells were transfected followed by analysis of miR-153
level by real-time PCR, P-gp level by immunoblotting, and cell viability. MSCs are non-hematopoietic bone marrow-derived cells and symmetrical fibroblasts have the same characteristics as MSCs. MSCs have the potential for adipogenesis and osteogenic differentiation; miR-Cy5 can only enter
PTC cells through vesicle transfer. TMZ treatment upregulated miR-153 in exosomes; MSC-derived exosomes can be directly transferred to PTC cells. miR-153-inhibitor-Cy5 can effectively inhibit miR-153 transcription and expression of resistance-related proteins. miR-153-inhibitor can promote
TMZ’s effect and lead to cell death as demonstrated by increased level of active caspase-3. Inhibiting the endogenous transcription of miR-153 by miR-153 inhibitor can significantly down-regulate cell resistance protein, thereby promoting cell apoptosis under the action of TMZ.
Collapse
Affiliation(s)
- Xiaoxin Wang
- Department of Nuclear Medicine, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Jia Zheng
- Department of Ultrasound, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Donghu Wen
- Department of Hematology, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Chunxiang Li
- Department of Nuclear Medicine, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Xingjiang Li
- Department of Thyroid Surgery, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| |
Collapse
|
14
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Zha K, Li X, Tian G, Yang Z, Sun Z, Yang Y, Wei F, Huang B, Jiang S, Li H, Sui X, Liu S, Guo Q. Evaluation of CD49f as a novel surface marker to identify functional adipose-derived mesenchymal stem cell subset. Cell Prolif 2021; 54:e13017. [PMID: 33704842 PMCID: PMC8088464 DOI: 10.1111/cpr.13017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES CD49f is expressed on a variety of stem cells and has certain effects on their cytological functions, such as proliferation and differentiation potential. However, whether CD49f is expressed on the surface of adipose tissue-derived mesenchymal stem cells (ADSCs) and its effect on ADSCs has not been clarified. MATERIALS AND METHODS The effects of in vitro culture passage and inflammatory factor treatment on CD49f expression and the adhesion ability of ADSCs from mice and rats were investigated. CD49f+ cells were selected from rat ADSCs (rADSCs) by magnetic-activated cell sorting (MACS), and the cellular functions of CD49f+ ADSCs and unsorted ADSCs, including their clonogenic, proliferation, adipogenic and osteogenic differentiation, migration and anti-apoptotic capacities, were compared. RESULTS CD49f expression and the adhesion ability of ADSCs decreased with increasing in vitro culture passage number. TNF-α and IFN-γ treatment decreased CD49f expression but increased the adhesion ability of ADSCs. After CD49f was blocked with an anti-CD49f antibody, the adhesion ability of ADSCs was decreased. No significant difference in clonogenic activity was observed between unsorted ADSCs and CD49f+ ADSCs. CD49f+ ADSCs had greater proliferation, adipogenic and osteogenic differentiation, migration and anti-apoptotic capacities than unsorted ADSCs. CONCLUSION In the current study, the expression of CD49f on ADSCs was identified for the first time. The expression of CD49f on ADSCs was influenced by in vitro culture passage number and inflammatory factor treatment. Compared with unsorted ADSCs, CD49f + ADSCs exhibited superior cellular functions, thus may have great application value in mesenchymal stem cell (MSC)-based therapies.
Collapse
Affiliation(s)
- Kangkang Zha
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guangzhao Tian
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yu Yang
- The Second People's Hospital of Guiyang, Guiyang, China
| | - Fu Wei
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Bo Huang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shuangpeng Jiang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Hao Li
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- School of Medicine, Nankai University, Tianjin, China
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Valizadeh A, Asghari S, Bastani S, Sarvari R, Keyhanvar N, Razin SJ, Khiabani AY, Yousefi B, Yousefi M, Shoae-Hassani A, Mahmoodpoor A, Hamishehkar H, Tavakol S, Keshel SH, Nouri M, Seifalian AM, Keyhanvar P. Will stem cells from fat and growth factors from blood bring new hope to female patients with reproductive disorders? Reprod Biol 2021; 21:100472. [PMID: 33639342 DOI: 10.1016/j.repbio.2020.100472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 01/05/2023]
Abstract
Female reproductive system disorders (FRSD) with or without infertility are prevalent women's health problems with a variety of treatment approaches including surgery and hormone therapy. It currently considering to sub-branch of regenerative medicine including stem cells or growth factors injection-based delivery treatment might be improved female reproductive health life. The most common products used for these patients treatment are autologous cell or platelet-based products from patients, including platelet-rich plasma, plasma rich in growth factor, platelet-rich fibrin, and stromal vascular fraction. In this review, we discuss each of the above products used in treatment of FRSD and critically evaluate the clinical outcome.
Collapse
Affiliation(s)
- Amir Valizadeh
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bastani
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Keyhanvar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Gene Yakhteh Keyhan (Genik) Company (Ltd), Pharmaceutical Biotechnology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran; ARTAN1100 Startup Accelerator, Tabriz, Iran
| | - Sepideh Jalilzadeh Razin
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Yousefzadeh Khiabani
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Shoae-Hassani
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Andam Baft Yakhteh (ABY) Company (Ltd), Tehran, Iran
| | - Ata Mahmoodpoor
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; ARTAN1100 Startup Accelerator, Tabriz, Iran; Zist Andam Yakhteh Azerbaijan (ZAYA) Company (PHT), Medical Instrument Technology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander Marcus Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London NW1 0NH, United Kingdom
| | - Peyman Keyhanvar
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; ARTAN1100 Startup Accelerator, Tabriz, Iran; Zist Andam Yakhteh Azerbaijan (ZAYA) Company (PHT), Medical Instrument Technology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; HealthNBICS Group, Convergence of Knowledge and Technology to the benefit of Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| |
Collapse
|