1
|
Zhou K, Luo Z, Huang W, Liu Z, Miao X, Tao S, Wang J, Zhang J, Wang S, Zeng X. Biological Roles of Lipids in Rice. Int J Mol Sci 2024; 25:9046. [PMID: 39201734 PMCID: PMC11354756 DOI: 10.3390/ijms25169046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Lipids are organic nonpolar molecules with essential biological and economic importance. While the genetic pathways and regulatory networks of lipid biosynthesis and metabolism have been extensively studied and thoroughly reviewed in oil crops such as soybeans, less attention has been paid to the biological roles of lipids in rice, a staple food for the global population and a model species for plant molecular biology research, leaving a considerable knowledge gap in the biological roles of lipids. In this review, we endeavor to furnish a current overview of the advancements in understanding the genetic foundations and physiological functions of lipids, including triacylglycerol, fatty acids, and very-long-chain fatty acids. We aim to summarize the key genes in lipid biosynthesis, metabolism, and transcriptional regulation underpinning rice's developmental and growth processes, biotic stress responses, abiotic stress responses, fertility, seed longevity, and recent efforts in rice oil genetic improvement.
Collapse
Affiliation(s)
- Kun Zhou
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Zhengliang Luo
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Weidong Huang
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Zemin Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Xuexue Miao
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Shuhua Tao
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Jiemin Wang
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| | - Jian Zhang
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Shiyi Wang
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Xiaoshan Zeng
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (K.Z.); (Z.L.); (W.H.); (Z.L.); (X.M.); (S.T.); (J.W.)
| |
Collapse
|
2
|
Liao Y, Wang Z, Pei Y, Yan S, Chen T, Qi B, Li Y. Unveiling the applications of membrane proteins from oil bodies: leading the way in artificial oil body technology and other biotechnological advancements. Crit Rev Food Sci Nutr 2024:1-28. [PMID: 38594966 DOI: 10.1080/10408398.2024.2331566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Oil bodies (OBs) function as organelles that store lipids in plant seeds. An oil body (OB) is encased by a membrane composed of proteins (e.g., oleosins, caleosins, and steroleosins) and a phospholipid monolayer. The distinctive protein-phospholipid membrane architecture of OBs imparts exceptional stability even in extreme environments, thereby sparking increasing interest in their structure and properties. However, a comprehensive understanding of the structure-activity relationships determining the stability and properties of oil bodies requires a more profound exploration of the associated membrane proteins, an aspect that remains relatively unexplored. In this review, we aim to summarize and discuss the structural attributes, biological functions, and properties of OB membrane proteins. From a commercial perspective, an in-depth understanding of the structural and functional properties of OBs is important for the expansion of their applications by producing artificial oil bodies (AOB). Besides exploring their structural intricacies, we describe various methods that are used for purifying and isolating OB membrane proteins. These insights may provide a foundational framework for the practical utilization of OB membrane proteins in diverse applications within the realm of AOB technology, including biological and probiotic delivery, protein purification, enzyme immobilization, astringency detection, and antibody production.
Collapse
Affiliation(s)
- Yi Liao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhenxiao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yukun Pei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianyao Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Intelligent Equipment Research Center for the Development of Special Medicinal and Food Resources, Harbin Institute of Technology Chongqing Research Institute, Chongqing, China
| |
Collapse
|
3
|
Tan Q, Han B, Haque ME, Li YL, Wang Y, Wu D, Wu SB, Liu AZ. The molecular mechanism of WRINKLED1 transcription factor regulating oil accumulation in developing seeds of castor bean. PLANT DIVERSITY 2023; 45:469-478. [PMID: 37601547 PMCID: PMC10435909 DOI: 10.1016/j.pld.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 08/22/2023]
Abstract
The transcription factor WRINKLED1 (WRI1), a member of AP2 gene family that contain typical AP2 domains, has been considered as a master regulator regulating oil biosynthesis in oilseeds. However, the regulatory mechanism of RcWRI1 in regulating oil accumulation during seed development has not been clearly addressed. Castor bean (Ricinus communis) is one of the most important non-edible oil crops and its seed oils are rich in hydroxy fatty acids, widely applied in industry. In this study, based on castor bean reference genome, three RcWRIs genes (RcWRI1, RcWRI2 and RcWRI3) were identified and the expressed association of RcWRI1 with oil accumulation were determined. Heterologous transformation of RcWRI1 significantly increased oil content in tobacco leaf, confirming that RcWRI1 activate lipid biosynthesis pathway. Using DNA Affinity Purification sequencing (DAP-seq) technology, we confirmed RcWRI1 binding with Transcription Start Site of genes and identified 7961 WRI1-binding candidate genes. Functionally, these identified genes were mainly involved in diverse metabolism pathways (including lipid biosynthesis). Three cis-elements AW-box ([CnTnG](n)7[CG]) and AW-boxes like ([GnAnC](n)6[GC]/[GnAnC](n)7[G]) bound with RcWRI1 were identified. Co-expression network analysis of RcWRI1 further found that RcWRI1 might be widely involved in biosynthesis of storage materials during seed development. In particular, yeast one hybrid experiments found that both AP2 domains within RcWRI1 were required in binding targeted genes. These results not only provide new evidence to understand the regulatory mechanism of RcWRI1 in regulation of oil accumulation during castor bean seed development, but also give candidate gene resource for subsequent genetic improvement toward increasing oil content in oilseed crops.
Collapse
Affiliation(s)
- Qing Tan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Han
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Mohammad Enamul Haque
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Ye-Lan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Di Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Shi-Bo Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Ai-Zhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
4
|
Using systems metabolic engineering strategies for high-oil maize breeding. Curr Opin Biotechnol 2023; 79:102847. [PMID: 36446144 DOI: 10.1016/j.copbio.2022.102847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Maize oil, which is a blend of fatty acid esters generated from triacylglycerol (TAG), is an important component of maize-derived food, feed, and biofuel. The kernel oil content in commercial high-oil maize hybrids averages ∼8%, which is far lower than that in developed high-oil maize lines (as high as 20%). Advances in high-oil maize genomics and genetics and the development of systems metabolic engineering technologies provide new opportunities for high-oil maize breeding. In this review, we discuss the possibility of using kernels and vegetative tissues as factories to produce TAG, eicosapentaenoic acid, and docosahexaenoic acid. We further propose specific implementation strategies based on the metabolic engineering of other species to develop transgenic and gene-editing products, as well as traditional breeding strategies, for application in high-oil maize breeding programs.
Collapse
|
5
|
Kannan B, Liu H, Shanklin J, Altpeter F. Towards oilcane: preliminary field evaluation of metabolically engineered sugarcane with hyper-accumulation of triacylglycerol in vegetative tissues. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:64. [PMID: 37313011 PMCID: PMC10248597 DOI: 10.1007/s11032-022-01333-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/24/2022] [Indexed: 06/15/2023]
Abstract
We recently generated oilcane, a metabolically engineered sugarcane with hyper-accumulation of energy dense triacylglycerol in vegetative tissues. Refinement of this strategy in high biomass crops like sugarcane may result in elevated lipid yields that exceed traditional oilseed crops for biodiesel production. This is the first report of agronomic performance, stable co-expression of lipogenic factors, and TAG accumulation in transgenic sugarcane under field conditions. Co-expression of WRI1; DGAT1, OLE1, and RNAi suppression of PXA1 was stable during the 2-year field evaluation and resulted in TAG accumulation up to 4.4% of leaf DW. This TAG accumulation was 70-fold higher than in non-transgenic sugarcane and more than 2-fold higher than previously reported for the same line under greenhouse conditions. TAG accumulation correlated highest with the expression of WRI1. However, constitutive expression of WRI1 was negatively correlated with biomass accumulation. Transgenic lines without WRI1 expression accumulated TAG up to 1.6% of leaf DW and displayed no biomass yield penalty in the plant cane. These findings confirm sugarcane as a promising platform for the production of vegetative lipids and will be used to inform strategies to maximize future biomass and lipid yields. The main conclusion is that constitutive expression of WRI1 in combination with additional lipogenic factors (DGAT1-2, OLE1, PXA1) in sugarcane under field conditions leads to hyper-accumulation of TAG and reduces biomass yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01333-5.
Collapse
Affiliation(s)
- Baskaran Kannan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL USA
| | - Hui Liu
- Biosciences Department, Brookhaven National Laboratory, Upton, Brookhaven, NY USA
| | - John Shanklin
- Biosciences Department, Brookhaven National Laboratory, Upton, Brookhaven, NY USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL USA
| |
Collapse
|
6
|
Ectopic expression of WRINKLED1 in rice improves lipid biosynthesis but retards plant growth and development. PLoS One 2022; 17:e0267684. [PMID: 35984829 PMCID: PMC9390937 DOI: 10.1371/journal.pone.0267684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
WRINKLED1 (WRI1) is a transcription factor which is key to the regulation of seed oil biosynthesis in Arabidopsis. In the study, we identified two WRI1 genes in rice, named OsWRI1a and OsWRI1b, which share over 98% nucleotide similarity and are expressed only at very low levels in leaves and endosperms. The subcellular localization of Arabidopsis protoplasts showed that OsWRI1a encoded a nuclear localized protein. Overexpression of OsWRI1a under the control of the CaMV 35S promoter severely retarded plant growth and development in rice. Expressing the OsWRI1a gene under the control of the P1 promoter of Brittle2 (highly expressed in endosperm but low in leaves and roots) increased the oil content of both leaves and endosperms and upregulated the expression of several genes related to late glycolysis and fatty acid biosynthesis. However, the growth and development of the transgenic plants were also affected, with phenotypes including smaller plant size, later heading time, and fewer and lighter grains. The laminae (especially those of flag leaves) did not turn green and could not unroll normally. Thus, ectopic expression of OsWRI1a in rice enhances oil biosynthesis, but also leads to abnormal plant growth and development.
Collapse
|
7
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
8
|
Gong J, Peng Y, Yu J, Pei W, Zhang Z, Fan D, Liu L, Xiao X, Liu R, Lu Q, Li P, Shang H, Shi Y, Li J, Ge Q, Liu A, Deng X, Fan S, Pan J, Chen Q, Yuan Y, Gong W. Linkage and association analyses reveal that hub genes in energy-flow and lipid biosynthesis pathways form a cluster in upland cotton. Comput Struct Biotechnol J 2022; 20:1841-1859. [PMID: 35521543 PMCID: PMC9046884 DOI: 10.1016/j.csbj.2022.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Upland cotton is an important allotetraploid crop that provides both natural fiber for the textile industry and edible vegetable oil for the food or feed industry. To better understand the genetic mechanism that regulates the biosynthesis of storage oil in cottonseed, we identified the genes harbored in the major quantitative trait loci/nucleotides (QTLs/QTNs) of kernel oil content (KOC) in cottonseed via both multiple linkage analyses and genome-wide association studies (GWAS). In ‘CCRI70′ RILs, six stable QTLs were simultaneously identified by linkage analysis of CHIP and SLAF-seq strategies. In ‘0-153′ RILs, eight stable QTLs were detected by consensus linkage analysis integrating multiple strategies. In the natural panel, thirteen and eight loci were associated across multiple environments with two algorithms of GWAS. Within the confidence interval of a major common QTL on chromosome 3, six genes were identified as participating in the interaction network highly correlated with cottonseed KOC. Further observations of gene differential expression showed that four of the genes, LtnD, PGK, LPLAT1, and PAH2, formed hub genes and two of them, FER and RAV1, formed the key genes in the interaction network. Sequence variations in the coding regions of LtnD, FER, PGK, LPLAT1, and PAH2 genes may support their regulatory effects on oil accumulation in mature cottonseed. Taken together, clustering of the hub genes in the lipid biosynthesis interaction network provides new insights to understanding the mechanism of fatty acid biosynthesis and TAG assembly and to further genetic improvement projects for the KOC in cottonseeds.
Collapse
Affiliation(s)
- Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke, Xijiang 843900, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Daoran Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Linjie Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Ruixian Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Quanwei Lu
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Pengtao Li
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| |
Collapse
|
9
|
Mining of Potential Gene Resources for Breeding Nutritionally Improved Maize. PLANTS 2022; 11:plants11050627. [PMID: 35270097 PMCID: PMC8912576 DOI: 10.3390/plants11050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Maize is one of the leading food crops and its kernel is rich in starch, lipids, protein and other energy substances. In addition, maize kernels also contain many trace elements that are potentially beneficial to human health, such as vitamins, minerals and other secondary metabolites. However, gene resources that could be applied for nutrient improvement are limited in maize. In this review, we summarized 107 genes that are associated with nutrient content from different plant species and identified 246 orthologs from the maize genome. In addition, we constructed physical maps and performed a detailed expression pattern analysis for the 246 maize potential gene resources. Combining expression profiles and their potential roles in maize nutrient improvement, genetic engineering by editing or ectopic expression of these genes in maize are expected to improve resistant starch, oil, essential amino acids, vitamins, iron, zinc and anthocyanin levels of maize grains. Thus, this review provides valuable gene resources for maize nutrient improvement.
Collapse
|