1
|
Huang Y, Mai Y, Ye W, Lv S, Zhou Y, Wu P, Zhou L, Li Y, Zhong K. Brachial Plexus Root Avulsion Injury-Induced Endothelin-Converting Enzyme-Like 1 Overexpression Is Associated with Injured Motor Neurons Survival. Mol Neurobiol 2024; 61:5194-5205. [PMID: 38170441 DOI: 10.1007/s12035-023-03887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Brachial plexus root avulsion (BPRA) injury arises from challenging delivery during childbirth, sports-related incidents, or car accidents, leading to extensive loss of motor neurons (MNs) and subsequent paralysis, including both motor and sensory impairment. Surgical nerve re-implantation cannot effectively restore motor function, and the survival of injured MNs is vital for axon regeneration and re-innervating the target muscles. Therefore, identifying novel molecular targets to improve injured MNs survival is of great significance in the treatment of BPRA injuries. Endothelin-converting enzyme-like 1 (ECEL1), a membrane-bound metallopeptidase, was initially identified as a molecule associated with nerve injuries. Damaged neurons exhibit a significant increase in the expression of ECEL1 following various types of nerve injuries, such as optic nerve injury and sciatic nerve injury. This study aimed to investigate the relationship between ECEL1 overexpression and the survival of injured MNs following BPRA injury. Our results observed a significant elevation in ECEL1 expression in injured MNs and positively correlated with MNs survival following BPRA injury. The transcription of ECEL1 is regulated by the transcription factors c-Jun and ATF3 in the context of BPRA injury, which is consistent with previous other nerve injuries study. In addition, the expression of TrkA gradually decreases in ECEL1-positive MNs and ECEL1 possibly preserves the activity of downstream AKT-GSK3β pathway of TrkA in injured MNs. In conclusion, our results introduce a promising therapeutic molecular target to assist re-implantation surgery for the treatment of BPRA injury.
Collapse
Affiliation(s)
- Yu Huang
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shiqin Lv
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pingzhen Wu
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lihua Zhou
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingqin Li
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong, China.
| | - Ke Zhong
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
2
|
Marino R, Sappington R, Feligioni M. Retinoprotective compounds, current efficacy, and future prospective. Neural Regen Res 2023; 18:2619-2622. [PMID: 37449599 DOI: 10.4103/1673-5374.373662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Retinal dysfunction is the most common cause of vision loss in several retinal disorders. It has been estimated a great increase in these pathologies that are becoming more globally widespread and numerous over time, also supported by the life expectancy increment. Among different types of retinopathies, we can account some that share causes, symptoms, and treatment including diabetic retinopathy, age-related macular degeneration, glaucoma, and retinitis pigmentosa. Molecular changes, environmental factors, and genetic predisposition might be some of the main causes that drive retinal tissue to chronic inflammation and neurodegeneration in these retinopathies. The treatments available on the market contain compounds that efficiently ameliorate some of the important clinical features of these pathologies like stabilization of the intraocular pressure, reduction of eye inflammation, control of eye oxidative stress which are considered the major molecular mechanisms related to retinal dysfunction. Indeed, the most commonly used drugs are anti-inflammatories, such as corticosteroids, antioxidant, hypotonic molecules and natural neuroprotective compounds. Unfortunately, these drugs, which are fundamental to treating disease symptoms, are not capable to cure the pathologies and so they are not life-changing for patients. This review provided an overview of current treatments on the market, but more interestingly, wants to be a quick window on the new treatments that are now in clinical trials. Additionally, it has been here highlighted that the recent technical enhancement of the investigation methods to identify the various retinopathies causes might be used as a sort of "precise medicine" approach to tailor the identification of molecular pathways involved and potentially study a dedicated treatment for each patient. This approach includes the use of cutting-edge technologies like gene therapy and metabolomics.
Collapse
Affiliation(s)
- Rachele Marino
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Rebecca Sappington
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center; Department of Ophthalmology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome; Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
3
|
Saucedo L, Pfister IB, Schild C, Garweg JG. Association of inflammation-related markers and diabetic retinopathy severity in the aqueous humor, but not serum of type 2 diabetic patients. PLoS One 2023; 18:e0293139. [PMID: 37883447 PMCID: PMC10602301 DOI: 10.1371/journal.pone.0293139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Diabetic retinopathy (DR) is a frequent microvascular complication of diabetes mellitus, and inflammatory pathways have been linked to its pathogenesis. In this retrospective, observational pilot study, we aimed to compare the concentrations of four inflammation-related proteins, ZAG, Reg-3a, elafin and RBP-4, in the serum and aqueous humor of healthy controls and diabetic patients with different stages of DR. The concentrations of VEGF-A, IL-8, IL-6 were determined in parallel as internal controls. In the serum, we did not find significant differences in the concentrations of target proteins. In the aqueous humor, higher levels of ZAG, RBP-4, Reg-3a and elafin were observed in advanced nonproliferative DR (NPDR)/ proliferative DR (PDR) compared to controls. The levels of ZAG and RBP-4 were also higher in advanced NPDR/PDR than in nonapparent DR. Normalization of target protein concentrations to the aqueous humor total protein demonstrates that a spill-over from serum due to breakage of the blood-retina barrier only partially accounts for increased inflammation related markers in later stages. In conclusion, we found elevated levels of Reg-3a, RBP-4, elafin and ZAG in advanced stages of diabetic retinopathy. Higher levels of pro-inflammatory proteins, Reg-3a and RBP-4, might contribute to the pathogenesis of diabetic retinopathy, as the parallel increased concentrations of anti-inflammatory molecules elafin and ZAG might indicate a compensatory mechanism.
Collapse
Affiliation(s)
- Lucia Saucedo
- Swiss Eye Institute, Rotkreuz, and Berner Augenklinik, Bern, Switzerland
| | - Isabel B. Pfister
- Swiss Eye Institute, Rotkreuz, and Berner Augenklinik, Bern, Switzerland
| | - Christin Schild
- Swiss Eye Institute, Rotkreuz, and Berner Augenklinik, Bern, Switzerland
| | - Justus G. Garweg
- Swiss Eye Institute, Rotkreuz, and Berner Augenklinik, Bern, Switzerland
- Department Ophthalmology, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Lee D, Tomita Y, Negishi K, Kurihara T. Pemafibrate, a potent selective peroxisome proliferator-activated receptor α modulator, a promising novel treatment for ischemic retinopathy? Neural Regen Res 2023; 18:1495-1496. [PMID: 36571350 PMCID: PMC10075098 DOI: 10.4103/1673-5374.360319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Deokho Lee
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Japan
| | - Yohei Tomita
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Japan
| |
Collapse
|
5
|
Lee D, Nakai A, Miwa Y, Negishi K, Tomita Y, Kurihara T. Pemafibrate prevents choroidal neovascularization in a mouse model of neovascular age-related macular degeneration. PeerJ 2023; 11:e14611. [PMID: 36643635 PMCID: PMC9838199 DOI: 10.7717/peerj.14611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Background Pathological choroidal neovascularization (CNV) is one of the major causes of visual impairment in neovascular age-related macular degeneration (AMD). CNV has been suppressed by using anti-vascular endothelial growth factor (VEGF) antibodies. However, some clinical cases have demonstrated the failure of anti-VEGF therapies. Furthermore, anti-VEGF agents might induce the development of ocular atrophy. Recently, peroxisome proliferator-activated receptor alpha (PPARα) activation using pemafibrate treatment was suggested as one of the promising therapeutic targets in the prevention of ocular ischemia. However, the preventive role of pemafibrate remains unclear in CNV. We aimed to examine the preventive role of pemafibrate on laser-induced pathological CNV. Methods Adult male C57BL/6 mice were orally supplied pemafibrate (0.5 mg/kg) for four days, followed by laser irradiation. Then, pemafibrate was consecutively given to mice with the same condition. CNV was visualized with isolectin-IB4. The eye (retina and/or retinal pigment epithelium [RPE]-choroid), liver, and serum were used for biomolecular analyses. Results We found that pemafibrate administration suppressed CNV volumes. Pemafibrate administration activated PPARα downstream genes in the liver and eye (especially, RPE-choroid). Furthermore, pemafibrate administration elevated serum fibroblast growth factor 21 levels and reduced serum levels of triglycerides. Conclusions Our data suggest a promising pemafibrate therapy for suppressing CNV in AMD.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Ayaka Nakai
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan,Aichi Animal Eye Clinics, Aichi, Japan
| | - Kazuno Negishi
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Lee D, Nakai A, Miwa Y, Tomita Y, Kunimi H, Chen J, Ikeda SI, Tsubota K, Negishi K, Kurihara T. Retinal degeneration induced in a mouse model of ischemia-reperfusion injury and its management by pemafibrate treatment. FASEB J 2022; 36:e22497. [PMID: 35969144 DOI: 10.1096/fj.202200455rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 01/02/2023]
Abstract
Retinal ischemia-reperfusion (I/R) injury is a common cause of visual impairment. To date, no effective treatment is available for retinal I/R injury. In addition, the precise pathological mechanisms still need to be established. Recently, pemafibrate, a peroxisome proliferator-activated receptor α (PPARα) modulator, was shown to be a promising drug for retinal ischemia. However, the role of pemafibrate in preventing retinal I/R injury has not been documented. Here, we investigated how retinal degeneration occurs in a mouse model of retinal I/R injury by elevation of intraocular pressure and examined whether pemafibrate could be beneficial against retinal degeneration. Adult mice were orally administered pemafibrate (0.5 mg/kg/day) for 4 days, followed by retinal I/R injury. The mice were continuously administered pemafibrate once every day until the end of the experiments. Retinal functional changes were measured using electroretinography. Retina, liver, and serum samples were used for western blotting, quantitative PCR, immunohistochemistry, or enzyme linked immunosorbent assay. Retinal degeneration induced by retinal inflammation was prevented by pemafibrate administration. Pemafibrate administration increased the hepatic PPARα target gene expression and serum levels of fibroblast growth factor 21, a neuroprotective molecule in the eye. The expression of hypoxia-response and pro-and anti-apoptotic/inflammatory genes increased in the retina following retinal I/R injury; however, these changes were modulated by pemafibrate administration. In conclusion, pemafibrate is a promising preventive drug for ischemic retinopathies.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Ayaka Nakai
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Aichi Animal Eye Clinic, Aichi, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hiromitsu Kunimi
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Junhan Chen
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ikeda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kazuno Negishi
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Alfarhan M, Liu F, Shan S, Pichavaram P, Somanath PR, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Suppresses Excitotoxicity Induced Neuroinflammation in Mouse Retina. Int J Mol Sci 2022; 23:2133. [PMID: 35216248 PMCID: PMC8875684 DOI: 10.3390/ijms23042133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | | | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
9
|
Investigating the Mechanisms of Pollen Typhae in the Treatment of Diabetic Retinopathy Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5728408. [PMID: 35024051 PMCID: PMC8747905 DOI: 10.1155/2022/5728408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the main bioactive compounds and investigate the underlying mechanism of Pollen Typhae (PT) against diabetic retinopathy (DR) by network pharmacology and molecular docking analysis. METHODS Bioactive ingredients and the target proteins of PT were obtained from TCMSP, and the related target genes were acquired from the SwissTargetPrediction database. The target genes of DR were obtained from GeneCards, TTD database, DisGeNET database, and DrugBank. The compound-target interaction network was established based on Cytoscape 3.7.2. The protein-protein interaction (PPI) network was constructed via STRING database and Cytoscape 3.7.2. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were visualized through DAVID database and Bioinformatics. Ingredient-gene-pathway network analysis was conducted to further screen the ingredients, target proteins, and pathways closely related to the biological mechanism on PT for DR, and molecular docking analysis was performed by SYBYL-X 2.1.1 software. Finally, the mechanism and underlying targets of PT in the treatment of DR were predicted. RESULTS A total of 8 compounds and 171 intersection targets were obtained based on the online network database. 7 main compounds were screened from compound-target network, and 53 targets including the top six key targets (PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR) were further acquired from PPI analysis. The 53 key targets covered 80 signaling pathways, among which PI3K-Akt signaling pathway, focal adhesion, Rap1 signaling pathway, VEGF signaling pathway, and HIF-1 signaling pathway were closely connected with the biological mechanism involved in the alleviation of DR by PT. Ingredient-gene-pathway network shows that AKTI, EGFR, and VEGFA were core genes, kaempferol and isorhamnetin were pivotal ingredients, and VEGF signaling pathway and Rap1 signaling pathway were closely involved in anti-DR. The docking results indicated that five main compounds (arachidonic acid, isorhamnetin, quercetin, kaempferol, and (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) had good binding activity with EGFR and AKT1 targets. CONCLUSION The active ingredients in PT may regulate the levels of inflammatory factors, suppress the oxidative stress, and inhibit the proliferation, migration, and invasion of retinal pericytes by acting on PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR targets through VEGF signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and HIF-1 signaling pathway to play a therapeutic role in diabetic retinopathy.
Collapse
|
10
|
Lee D, Tomita Y, Allen W, Tsubota K, Negishi K, Kurihara T. PPARα Modulation-Based Therapy in Central Nervous System Diseases. Life (Basel) 2021; 11:life11111168. [PMID: 34833044 PMCID: PMC8622664 DOI: 10.3390/life11111168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
The burden of neurodegenerative diseases in the central nervous system (CNS) is increasing globally. There are various risk factors for the development and progression of CNS diseases, such as inflammatory responses and metabolic derangements. Thus, curing CNS diseases requires the modulation of damaging signaling pathways through a multitude of mechanisms. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors (PPARα, PPARβ/δ, and PPARγ), and they work as master sensors and modulators of cellular metabolism. In this regard, PPARs have recently been suggested as promising therapeutic targets for suppressing the development of CNS diseases and their progressions. While the therapeutic role of PPARγ modulation in CNS diseases has been well reviewed, the role of PPARα modulation in these diseases has not been comprehensively summarized. The current review focuses on the therapeutic roles of PPARα modulation in CNS diseases, including those affecting the brain, spinal cord, and eye, with recent advances. Our review will enable more comprehensive therapeutic approaches to modulate PPARα for the prevention of and protection from various CNS diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (Y.T.); (T.K.); Tel.: +1-617-919-2533 (Y.T.); +81-3-5636-3204 (T.K.)
| | - William Allen
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Correspondence: (Y.T.); (T.K.); Tel.: +1-617-919-2533 (Y.T.); +81-3-5636-3204 (T.K.)
| |
Collapse
|
11
|
Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy. J Clin Med 2021; 10:jcm10204666. [PMID: 34682788 PMCID: PMC8537579 DOI: 10.3390/jcm10204666] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes and one of the leading causes of vision loss worldwide. Despite extensive efforts to reduce visual impairment, the prevalence of DR is still increasing. The initial pathophysiology of DR includes damage to vascular endothelial cells and loss of pericytes. Ensuing hypoxic responses trigger the expression of vascular endothelial growth factor (VEGF) and other pro-angiogenic factors. At present, the most effective treatment for DR and diabetic macular edema (DME) is the control of blood glucose levels. More advanced cases require laser, anti-VEGF therapy, steroid, and vitrectomy. Pan-retinal photocoagulation for non-proliferative diabetic retinopathy (NPDR) is well established and has demonstrated promising outcomes for preventing the progressive stage of DR. Furthermore, the efficacy of laser therapies such as grid and subthreshold diode laser micropulse photocoagulation (SDM) for DME has been reported. Vitrectomy has been performed for vitreous hemorrhage and tractional retinal detachment for patients with PDR. In addition, anti-VEGF treatment has been widely used for DME, and recently its potential to prevent the progression of PDR has been remarked. Even with these treatments, many patients with DR lose their vision and suffer from potential side effects. Thus, we need alternative treatments to address these limitations. In recent years, the relationship between DR, lipid metabolism, and inflammation has been featured. Research in diabetic animal models points to peroxisome proliferator-activated receptor alpha (PPARα) activation in cellular metabolism and inflammation by oral fenofibrate and/or pemafibrate as a promising target for DR. In this paper, we review the status of existing therapies, summarize PPARα activation therapies for DR, and discuss their potentials as promising DR treatments.
Collapse
|
12
|
Pemafibrate Prevents Retinal Dysfunction in a Mouse Model of Unilateral Common Carotid Artery Occlusion. Int J Mol Sci 2021; 22:ijms22179408. [PMID: 34502311 PMCID: PMC8431531 DOI: 10.3390/ijms22179408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases lead to retinal ischemia, one of the leading causes of blindness. Retinal ischemia triggers pathological retinal glial responses and functional deficits. Therefore, maintaining retinal neuronal activities and modulating pathological gliosis may prevent loss of vision. Previously, pemafibrate, a selective peroxisome proliferator-activated receptor alpha modulator, was nominated as a promising drug in retinal ischemia. However, a protective role of pemafibrate remains untouched in cardiovascular diseases-mediated retinal ischemia. Therefore, we aimed to unravel systemic and retinal alterations by treating pemafibrate in a new murine model of retinal ischemia caused by cardiovascular diseases. Adult C57BL/6 mice were orally administered pemafibrate (0.5 mg/kg) for 4 days, followed by unilateral common carotid artery occlusion (UCCAO). After UCCAO, pemafibrate was continuously supplied to mice until the end of experiments. Retinal function (a-and b-waves and the oscillatory potentials) was measured using electroretinography on day 5 and 12 after UCCAO. Moreover, the retina, liver, and serum were subjected to qPCR, immunohistochemistry, or ELISA analysis. We found that pemafibrate enhanced liver function, elevated serum levels of fibroblast growth factor 21 (FGF21), one of the neuroprotective molecules in the eye, and protected against UCCAO-induced retinal dysfunction, observed with modulation of retinal gliosis and preservation of oscillatory potentials. Our current data suggest a promising pemafibrate therapy for the suppression of retinal dysfunction in cardiovascular diseases.
Collapse
|
13
|
Pemafibrate Pretreatment Attenuates Apoptosis and Autophagy during Hepatic Ischemia-Reperfusion Injury by Modulating JAK2/STAT3 β/PPAR α Pathway. PPAR Res 2021; 2021:6632137. [PMID: 33777128 PMCID: PMC7972847 DOI: 10.1155/2021/6632137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a common phenomenon in liver transplantation and liver surgery. This article is aimed at clarifying the role of pemafibrate in HIRI through JAK2/STAT3β/PPARα. In the experiment, we divided Balb/c into seven groups, namely, normal control (NC), Sham, PEM (1.0 mg/kg), IRI, IRI + PEM (0.1 mg/kg), IRI + PEM (0.5 mg/kg), and IRI + PEM (1.0 mg/kg). We used biochemical assay, histopathological evaluation, immunohistochemistry, RT-PCR and qRT-PCR, ELISA analysis, and other methods to determine the level of serum AST, ALT, IL-1β, and TNF-α in the liver at three time points (2 h, 8 h, and 24 h) after reperfusion of apoptosis factor, autophagy factor, and the JAK2/STAT3/PPARα content in tissues. Our experiment results showed that the pemafibrate can effectively reduce the level of hepatic IR injury. In addition, pemafibrate has anti-inflammatory, antiapoptotic, and antiautophagy effects, which are mediated by the JAK2/STAT3β/PPARα pathway.
Collapse
|