1
|
Rajagopalan K, Selvan Christyraj JD, Selvan Christyraj JRS, Chandrasekar M, Balamurugan N, Suresh NK, Das P, Vaidhyalingham AB, Bharathiraja L. Enhancing the wound healing potential using earthworm clitellum factors and elucidating its molecular mechanism in an in-vitro and earthworm model. Sci Rep 2024; 14:28086. [PMID: 39543224 PMCID: PMC11564971 DOI: 10.1038/s41598-024-79304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Earthworm, Eudrilus eugeniae cannot survive and regenerate without clitellum segments. In regenerating worms, the clitellum's epithelial and circular muscular layers are reduced to one-third, and longitudinal cell layers to half. In C2C12 cells, Clitellum Factors (CF - 5, 25 and 50%) and Regenerative Clitellum Factors (RCF - 5, 25, 50, 75%) ameliorate the cell viability up to 20-28% and 30-38% respectively than the control. In contrast, extracts from body segments negatively influence cell viability up to 80%. In a scratch-wound assay, 25% RCF and 5% CF achieved 99.86% and 81.54% wound closure in 24 h, respectively, compared to 40% in controls. RCF and CF also possess enhanced anti-microbial activity against gram + ve bacteria. Western Blotting reveals that Wnt3a, HoxD3 and VEGF were remarkably upregulated in RCF and CF treated samples and their upregulated stemness property is effectively regulated by p53, TCTP, H2AX, Cleaved Caspase-3 proteins. Immunofluorescence data clearly states that Wnt3a and Caspase-3 signals are more profoundly observed in nuclear over cytoplasm in RCF treated samples and H2AX shows less nuclear signals than CF. In in-vivo earthworm model conditions, RCF remarkably promotes the survivability and wound healing ability by promoting the Wnt3a and VEGF expression together with downregulation of Cox2.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamilnadu, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamilnadu, India.
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamilnadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamilnadu, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamilnadu, India
| | | | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamilnadu, India
| | - Ashwin Barath Vaidhyalingham
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamilnadu, India
| | - Leela Bharathiraja
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamilnadu, India
| |
Collapse
|
2
|
Rossan Mathews MG, Selvan Christyraj JRS, Subramaniam R, Venkatachalam S, Selvan Christyraj JD, Yesudhason BV, Venkatachalam K, Anandharaj JL. De-novo transcriptome of anterior epimorphic regeneration in Perionyx excavatus. Sci Data 2024; 11:1093. [PMID: 39375364 PMCID: PMC11458598 DOI: 10.1038/s41597-024-03941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Perionyx excavatus, an indigenous earthworm possesses exceptional regeneration capacity. Their anterior regeneration features wound closure, regeneration induction and morphogenesis of damaged organs. This study involved a complete analysis of their transcriptomic dataset, with an emphasis on identifying the genes expressed during regeneration and predicting their implications in the process of regeneration and morphogenesis. Control (first ten segments) and test (5th day blastema) RNA samples of biological replicates were isolated and sequenced on NovaSeq. 6000 using PE150 read length. An average of 98.64% of high-quality data was retained with assembly showing better continuity with the average transcript length with 823 bp and N50 value of 1,858 bp. This is the first report on the comparative transcriptome of P. excavatus during anterior regeneration and this study will shed light on the complexity of annelid regeneration.
Collapse
Affiliation(s)
- Melinda Grace Rossan Mathews
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Ravichandran Subramaniam
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Saravanakumar Venkatachalam
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Kesavamoorthy Venkatachalam
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Jenif Leo Anandharaj
- Regeneration and Stem Cell Biology lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
3
|
Rajagopalan K, Christyraj JDS, Chelladurai KS, Christyraj JRSS, Das P, Roy A, Vrushali C, Chemmet NSM. The molecular mechanisms underlying the regeneration process in the earthworm, Perionyx excavatus exhibit indications of apoptosis-induced compensatory proliferation (AICP). In Vitro Cell Dev Biol Anim 2024; 60:222-235. [PMID: 38504086 DOI: 10.1007/s11626-023-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/16/2023] [Indexed: 03/21/2024]
Abstract
Regeneration is a multifaceted biological phenomenon that necessitates the intricate orchestration of apoptosis, stem cells, and immune responses, culminating in the regulation of apoptosis-induced compensatory proliferation (AICP). The AICP context of research is observed in many animal models like in Hydra, Xenopus, newt, Drosophila, and mouse but so far not reported in earthworm. The earthworm Perionyx excavatus is used in the present study to understand the relationship between AICP-related protein expression and regeneration success in different conditions (normal regeneration and abnormal multiple bud formation). Initially, the worms are amputated into five equal portions and it is revealed that regeneration in P. excavatus is clitellum independent and it gives more preference for anterior regeneration (regrowth of head portion) than for posterior regeneration (regrowth of tail portion). The posterior segments of the worm possess enormous regeneration ability but this is lacking in anterior segments. Alkaline phosphate, a stem cell marker, shows strong signals throughout all the posterior segments but it decreases in the initial 1st to 15th anterior segments which lack the regeneration ability. While regenerating normally, it was suggested that the worm follow AICP principles. This is because there was increased expression of apoptosis signals throughout the regeneration process along with constant expression of stem cell proliferation response together with cellular proliferation. In amputated posterior segments maintained in vitro, the apoptosis signals were extensively detected on the 1st day. However, on the 4th and 6th days, caspase-3 and H2AX expression are significantly suppressed, which may eventually alter the Wnt3a and histone H3 patterns that impair the AICP and result in multiple bud formation. Our results suggest that AICP-related protein expression pattern is crucial for initiating proper regeneration.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India.
| | - Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India.
| | - Puja Das
- Molecular Biology and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Jeppiaar Nagar, SH 49A, Chennai, Tamil Nadu, 621306, India
| | - Apoorva Roy
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Chaughule Vrushali
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | |
Collapse
|
4
|
Rajagopalan K, Christyraj JDS, Chelladurai KS, Das P, Mahendran K, Nagarajan L, Gunalan S. Understanding the Multi-Functional Role of TCTP in the Regeneration Process of Earthworm, Perionyx excavatus. Tissue Eng Regen Med 2024; 21:353-366. [PMID: 37935935 PMCID: PMC10825100 DOI: 10.1007/s13770-023-00599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Regeneration is a highly complex process that requires the coordination of numerous molecular events, and identifying the key ruler that governs is important to investigate. While it has been shown that TCTP is a multi-functional protein that regulates cell proliferation, differentiation, apoptosis, anti-apoptosis, stem cell maintenance, and immune responses, but only a few studies associated to regeneration have been reported. To investigate the multi-functional role of TCTP in regeneration, the earthworm Perionyx excavatus was chosen. METHODS Through pharmacological suppression of TCTP, amputation, histology, molecular docking, and western blotting, the multi-function role of TCTP involved in regeneration is revealed. RESULTS Amputational studies show that P. excavatus is a clitellum-independent regenerating earthworm resulting in two functional worms upon amputation. Arresting cell cycle at the G1/S boundary using 2 mM Thymidine confirms that P. excavatus execute both epimorphosis and morphallaxis regeneration mode. The pharmacological suppression of TCTP using buclizine results in regeneration suppression. Following the combinatorial injection of 2 mM Thymidine and buclizine, the earthworm regeneration is completely blocked, which suggests a critical functional role of TCTP in morphallaxis. The pharmacological inhibition of TCTP also suppresses the key proteins involved in regeneration: Wnt3a (stem cell marker), PCNA (cell proliferation) and YAP1 (Hippo signalling) but augments the expression of cellular stress protein p53. CONCLUSION The collective results indicate that TCTP synchronously is involved in the process of stem cell activation, cell proliferation, morphallaxis, and organ development in the regeneration event.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamilnadu, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamilnadu, India.
| | - Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamilnadu, India
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamilnadu, India
| | - Karthikeyan Mahendran
- Department of Zoology and Microbiology, Thiyagarajar College, Madurai, Tamilnadu, India
| | - Logeshwari Nagarajan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamilnadu, India
| | - Saritha Gunalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamilnadu, India
| |
Collapse
|
5
|
Paré L, Bideau L, Baduel L, Dalle C, Benchouaia M, Schneider SQ, Laplane L, Clément Y, Vervoort M, Gazave E. Transcriptomic landscape of posterior regeneration in the annelid Platynereis dumerilii. BMC Genomics 2023; 24:583. [PMID: 37784028 PMCID: PMC10546743 DOI: 10.1186/s12864-023-09602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Restorative regeneration, the capacity to reform a lost body part following amputation or injury, is an important and still poorly understood process in animals. Annelids, or segmented worms, show amazing regenerative capabilities, and as such are a crucial group to investigate. Elucidating the molecular mechanisms that underpin regeneration in this major group remains a key goal. Among annelids, the nereididae Platynereis dumerilii (re)emerged recently as a front-line regeneration model. Following amputation of its posterior part, Platynereis worms can regenerate both differentiated tissues of their terminal part as well as a growth zone that contains putative stem cells. While this regeneration process follows specific and reproducible stages that have been well characterized, the transcriptomic landscape of these stages remains to be uncovered. RESULTS We generated a high-quality de novo Reference transcriptome for the annelid Platynereis dumerilii. We produced and analyzed three RNA-sequencing datasets, encompassing five stages of posterior regeneration, along with blastema stages and non-amputated tissues as controls. We included two of these regeneration RNA-seq datasets, as well as embryonic and tissue-specific datasets from the literature to produce a Reference transcriptome. We used this Reference transcriptome to perform in depth analyzes of RNA-seq data during the course of regeneration to reveal the important dynamics of the gene expression, process with thousands of genes differentially expressed between stages, as well as unique and specific gene expression at each regeneration stage. The study of these genes highlighted the importance of the nervous system at both early and late stages of regeneration, as well as the enrichment of RNA-binding proteins (RBPs) during almost the entire regeneration process. CONCLUSIONS In this study, we provided a high-quality de novo Reference transcriptome for the annelid Platynereis that is useful for investigating various developmental processes, including regeneration. Our extensive stage-specific transcriptional analysis during the course of posterior regeneration sheds light upon major molecular mechanisms and pathways, and will foster many specific studies in the future.
Collapse
Affiliation(s)
- Louis Paré
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Loïc Bideau
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Loeiza Baduel
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Caroline Dalle
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Médine Benchouaia
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Stephan Q Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Lucie Laplane
- Université Paris I Panthéon-Sorbonne, CNRS UMR 8590 Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), Paris, France
- Gustave Roussy, UMR 1287, Villejuif, France
| | - Yves Clément
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, F-75013, France.
| |
Collapse
|
6
|
Rao Tatta E, Paul S, Kumavath R. Transcriptome Analysis revealed the Synergism of Novel Rhodethrin inhibition on Biofilm architecture, Antibiotic Resistance and Quorum sensing inEnterococcus faecalis. Gene 2023; 871:147436. [PMID: 37075926 DOI: 10.1016/j.gene.2023.147436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Enterococcus sp. emerged as an opportunistic nosocomial pathogen with the highest antibiotic resistance and mortality rate. Biofilm is problematic primarily since it is regulated by the global bacterial cell to cell communication mediated by the quorum sensing system. sing system. Thus, potential natural antagonists in a novel drug formulation against biofilm-forming Enterococcus faecalis is critical. We used RNA-Seq to evaluate the effects of the novel molecule rhodethrin with chloramphenicol induced on Enterococcus faecalis and DEGs were identified. In transcriptome sequence analysis, a total of 448 with control Vs rhodethrin, 1591 were in control Vs chloramphenicol, 379 genes were DEGs from control Vs synergies, in rhodethrin with chloramphenicol, 379 genes were differentially expressed, whereas 264 genes were significantly downregulated, indicating that 69.69% ofE. faecaliswas altered. The transcriptional sequence data further expression analysis qRT-PCR, and the results shed that the expression profiles of five significant biofilm formation responsible genes such as, Ace, AtpB, lepA, bopD, and typA, 3 genes involved in quorum sensing are sylA, fsrC and camE, and 4 genes involved in resistance were among including liaX, typA, EfrA, and lepA, were significantly suppressed expressions of the biofilm, quorum sensing, and resistance that are supported by transcriptome analysis.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, the University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India; Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
7
|
Lathakumari S, Seenipandian S, Balakrishnan S, Raj APMS, Sugiyama H, Namasivayam GP, Sivasubramaniam S. Identification of genes responsible for the social skill in the earthworm, Eudrilus eugeniae. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
del Olmo I, Verdes A, Álvarez‐Campos P. Distinct patterns of gene expression during regeneration and asexual reproduction in the annelid Pristina leidyi. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:405-420. [PMID: 35604322 PMCID: PMC9790225 DOI: 10.1002/jez.b.23143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/03/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Regeneration, the ability to replace lost body parts, is a widespread phenomenon in the animal kingdom often connected to asexual reproduction or fission, since the only difference between the two appears to be the stimulus that triggers them. Both developmental processes have largely been characterized; however, the molecular toolkit and genetic mechanisms underlying these events remain poorly unexplored. Annelids, in particular the oligochaete Pristina leidyi, provide a good model system to investigate these processes as they show diverse ways to regenerate, and can reproduce asexually through fission under laboratory conditions. Here, we used a comparative transcriptomics approach based on RNA-sequencing and differential gene expression analyses to understand the molecular mechanisms involved in anterior regeneration and asexual reproduction. We found 291 genes upregulated during anterior regeneration, including several regeneration-related genes previously reported in other annelids such as frizzled, paics, and vdra. On the other hand, during asexual reproduction, 130 genes were found upregulated, and unexpectedly, many of them were related to germline development during sexual reproduction. We also found important differences between anterior regeneration and asexual reproduction, with the latter showing a gene expression profile more similar to that of control individuals. Nevertheless, we identified 35 genes that were upregulated in both conditions, many of them related to cell pluripotency, stem cells, and cell proliferation. Overall, our results shed light on the molecular mechanisms that control anterior regeneration and asexual reproduction in annelids and reveal similarities with other animals, suggesting that the genetic machinery controlling these processes is conserved across metazoans.
Collapse
Affiliation(s)
- Irene del Olmo
- Department of Biology (Zoology)Universidad Autónoma de MadridMadridSpain
| | - Aida Verdes
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales de MadridMadridSpain
| | | |
Collapse
|
9
|
Rajagopalan K, Christyraj JDS, Chelladurai KS, Gnanaraja JKJS, Christyraj JRSS. Comparative analysis of the survival and regeneration potential of juvenile and matured earthworm, Eudrilus eugeniae, upon in vivo and in vitro maintenance. In Vitro Cell Dev Biol Anim 2022; 58:587-598. [PMID: 35920958 DOI: 10.1007/s11626-022-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Eudrilus eugeniae is a clitellum-dependent earthworm that requires intact clitellum segments for its survival and regeneration. The present study aims to interconnect the survival and regeneration ability that varies between in vivo and in vitro maintenance upon different sites of amputation. The amputated portion of the worm that possesses intact clitellum (13th-18th segments) survived and had the potential to regenerate, whereas worms with partial or without clitellum segments only survived and were unable to regenerate. Besides segment length and clitellum segments, clitellum factors also determined the survival, blastemal initiation and differentiation potential. The survivability and regeneration potential of worms were augmented upon in vitro maintenance. Notably, the amputated segments (1st-10th segments) and posterior segments of similar length, which usually die within the 4th day in vivo, survived for more than 60 days in vitro but lacked the regeneration ability. On the other hand, the amputated posterior segments (30th to 37th segments) from juvenile worms, maintained in in vitro condition, survived and initiated blastema with multiple buds but lacked the ability to regenerate. Interestingly, the equal half of adult worm blastema that is maintained in in vitro conditions were able to form the blastema-like structure with the help of a unique stick. The anterior blastema failed to retain the regenerative structure but the posterior portion of the amputated blastema, which is also associated with a small portion of the body segment, showed the ability to retain the regenerative structure. Our results conclude that the survivability is enhanced upon in vitro maintenance and this condition favours the adult dedifferentiated blastemal and stem cell-enriched juvenile posterior segments to form a regenerative blastema.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, Tamil Nadu, 621306, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, Tamil Nadu, 621306, India.
| | - Karthikeyan Subbiahanadar Chelladurai
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, Tamil Nadu, 621306, India.,School of Health Sciences, Purdue University, West Lafayette, USA
| | | | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, Tamil Nadu, 621306, India.
| |
Collapse
|
10
|
Arumugaperumal A, Sudalaimani DK, Arumugaswami V, Sivasubramaniam S. Draft Genome Sequence of the Earthworm Eudrilus eugeniae. Curr Genomics 2022; 23:118-125. [PMID: 36778974 PMCID: PMC9878837 DOI: 10.2174/1389202923666220401095626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Earthworms are annelids. They play a major role in agriculture and soil fertility. Vermicompost is the best organic manure for plant crops. Eudrilus eugeniae is an earthworm well suited for efficient vermicompost production. The worm is also used to study the cell and molecular biology of regeneration, molecular toxicology, developmental biology, etc., because of its abilities like high growth rate, rapid reproduction, tolerability toward wide temperature range, and less cost of maintenance. Objective: The whole genome has been revealed only for Eisenia andrei and Eisenia fetida. Methods: In the present work, we sequenced the genome of E. eugeniae using the Illumina platform and generated 160,684,383 paired-end reads. Results: The reads were assembled into a draft genome of size 488 Mb with 743,870 contigs and successfully annotated 24,599 genes. Further, 208 stem cell-specific genes and 3,432 non-coding genes were identified. Conclusion: The sequence and annotation details were hosted in a web application available at https://sudhakar-sivasubramaniam-labs.shinyapps.io/eudrilus_genome/.
Collapse
Affiliation(s)
| | | | | | - Sudhakar Sivasubramaniam
- Address correspondence to this author at the Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu- 627012, India; Tel: +91 9940998936; E-mail:
| |
Collapse
|
11
|
Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S. Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 2022; 22:1-32. [PMID: 35416560 DOI: 10.1007/s10142-022-00849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | | | - Arun Arumugaperumal
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Saranya Lathakumari
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Selvan Christyraj Jackson Durairaj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600 119, India
| | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
12
|
Fischer F, Best R, LaRocca-Stravalle Z, Kauffman J, Gillen K. Validation of three reference genes for quantitative RT-PCR analyses in regenerating Lumbriculus variegatus. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kostyuchenko RP, Kozin VV. Comparative Aspects of Annelid Regeneration: Towards Understanding the Mechanisms of Regeneration. Genes (Basel) 2021; 12:1148. [PMID: 34440322 PMCID: PMC8392629 DOI: 10.3390/genes12081148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023] Open
Abstract
The question of why animals vary in their ability to regenerate remains one of the most intriguing questions in biology. Annelids are a large and diverse phylum, many members of which are capable of extensive regeneration such as regrowth of a complete head or tail and whole-body regeneration, even from few segments. On the other hand, some representatives of both of the two major annelid clades show very limited tissue regeneration and are completely incapable of segmental regeneration. Here we review experimental and descriptive data on annelid regeneration, obtained at different levels of organization, from data on organs and tissues to intracellular and transcriptomic data. Understanding the variety of the cellular and molecular basis of regeneration in annelids can help one to address important questions about the role of stem/dedifferentiated cells and "molecular morphallaxis" in annelid regeneration as well as the evolution of regeneration in general.
Collapse
Affiliation(s)
- Roman P. Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia;
| | | |
Collapse
|