1
|
Sousa JN, Sousa BVDO, Santos EPD, Ribeiro GHM, Pereira APM, Guimarães VHD, Queiroz LDRP, Motta-Santos D, Farias LC, Guimarães ALS, de Paula AMB, Santos SHS. Effects of gallic acid and physical training on liver damage, force, and anxiety in obese mice: Hepatic modulation of Sestrin 2 (SESN2) and PGC-α expression. Gene 2024; 926:148606. [PMID: 38788813 DOI: 10.1016/j.gene.2024.148606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.
Collapse
Affiliation(s)
- Jaciara Neves Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Berenilde Valéria de Oliveira Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Eduardo Pinheiro Dos Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Guilherme Henrique Mendes Ribeiro
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Ana Paula Maciel Pereira
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Lorena Dos Reis Pereira Queiroz
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Daisy Motta-Santos
- Sports Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Nascimento AL, Pereira JHS, Caldas BV, Guimarães VHD, Monteiro-Junior RS, Paula AMB, Guimarães ALS, Pereira UA, Santos SHS. Dietary Supplementation with Apis mellifera Wholemeal Flour Reduces Hepatic Steatosis in Obese Mice. J Med Food 2024; 27:545-551. [PMID: 38770674 DOI: 10.1089/jmf.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Affiliation(s)
- Aline L Nascimento
- Instituto de Ciências Agrárias (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brazil
| | - Joyce H S Pereira
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - Bruna V Caldas
- Instituto de Ciências Agrárias (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brazil
| | - Victor H D Guimarães
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - Renato S Monteiro-Junior
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - Alfredo M B Paula
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - André L S Guimarães
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - Ulisses A Pereira
- Instituto de Ciências Agrárias (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brazil
| | - Sérgio H S Santos
- Instituto de Ciências Agrárias (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brazil
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| |
Collapse
|
3
|
Guimarães VHD, Marinho BM, Motta-Santos D, Mendes GDRL, Santos SHS. Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. J Nutr Biochem 2023; 113:109252. [PMID: 36509338 DOI: 10.1016/j.jnutbio.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Obesity and metabolic disorders represent a significant global health problem and the gut microbiota plays an important role in modulating systemic homeostasis. Recent evidence shows that microbiota and its signaling pathways may affect the whole metabolism and the Renin-Angiotensin System (RAS), which in turn seems to modify microbiota. The present review aimed to investigate nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome components. A description of metabolic changes was obtained based on relevant scientific literature. The molecular and physiological mechanisms that impact the human microbiome were addressed, including the gut microbiota associated with obesity, diabetes, and hepatic steatosis. The RAS interaction signaling and modulation were analyzed. Strategies including the use of prebiotics, symbiotics, probiotics, and biotechnology may affect the gut microbiota and its impact on human health.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Barbhara Mota Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- School of Physical Education, Physiotherapy, and Occupational Therapy - EEFFTO, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela da Rocha Lemos Mendes
- Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Inulin prebiotic dietary supplementation improves metabolic parameters by reducing the Toll-like receptor 4 transmembrane protein gene and interleukin 6 expression in adipose tissue. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Borém LMA, Freitas DF, Machado AS, Paraíso AF, Caldas BV, Neto JFR, Lima JP, Guimarães ALS, de Paula AMB, Santos SHS. Angiotensin II type 1 receptor (AT1) blockade by Telmisartan attenuates hepatic steatosis in high-fat fed mice reducing Resistin, TRL4, and Myd88 expression. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Telmisartan is a non-peptide angiotensin II receptor antagonist which acts by ACE/AngII/AT1 axis blockade (ARB). In the last years increasing evidence of its metabolic benefits pointed out this drug as the most promising ARB for nonalcoholic fatty liver disease (NAFLD) treatment. The aim of the present study was to investigate the Telmisartan effect on treating NAFLD in mice fed with a high-fat diet evaluating liver gene modulation. Twenty-four male mice were divided into four groups and fed for 60 days with a standard diet (ST), standard diet plus TEL (ST+TEL 5 mg/kg/day by gavage for 4 weeks), high-fat diet (HFD), or high-fat diet plus TEL (HFD+TEL 5 mg/kg/day by gavage for 4 weeks). Body weight, lipid profile, insulin, alanine transaminase, and aspartate aminotransferase were evaluated. Liver histology was analyzed. US imaging was performed to access liver dimension and echogenicity and also epididymal fat pad thickness. The expression of proinflammatory resistin/TRL4/MYD88 pathway was analyzed.
Results
The main findings showed that TEL reduced the resistin, TRL4, and Myd88 liver expression in the HFD + TEL group when compared to the obese control group (HFD). Decreased hepatic steatosis in the HFD + TEL group demonstrated by US measurements of the liver longitudinal axis and echogenicity were observed. In addition, TEL reduced epididymal adipose pad thickness, body weight, transaminases, and improved glucose tolerance test and HDL cholesterol.
Conclusions
We observed that Telmisartan treatment improved metabolism, decreasing NAFLD.
Graphical Abstract
Telmisartan improves metabolic and lipid profile and liver steatosis of obese mice
Collapse
|
6
|
Ma F, Huo Y, Li H, Yang F, Liao J, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. New insights into the interaction between duodenal toxicity and microbiota disorder under copper exposure in chicken: Involving in endoplasmic reticulum stress and mitochondrial toxicity. Chem Biol Interact 2022; 366:110132. [PMID: 36030842 DOI: 10.1016/j.cbi.2022.110132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
Copper (Cu) has been widely used in industrial agricultural production, but excess use can lead to toxic effect on host physiology, which poses a threaten to public hygiene. However, the relationship between gut microbiota and Cu-induced intestinal toxicity is unclear. Here, we identified that intestinal flora disturbance was related to duodenal toxicity under Cu exposure. We found that excess Cu disturbed gut microbiota homeostasis, resulting in Cu accumulation and intestinal damage. In addition, Cu considerably increased intestinal permeability by reducing expression of tight junction proteins (Claudlin-1, Occludin, and ZO-1). Meanwhile, Cu could induce endoplasmic reticulum stress, mitophagy, and mitochondria-mediated apoptosis in the duodenum, with the evidence by the elevated levels of GRP78, GRP94, LC3Ⅱ/LC3Ⅰ and Caspase-3 protein expression. Correlation analysis showed that Melainabacteria was closely related to tight junction proteins and endoplasmic reticulum stress of duodenum, indicating that disturbance of intestinal flora may aggravate the toxic effect of Cu. Therefore, our results suggest that the destruction of intestinal flora induced by excessive Cu may further lead to intestinal barrier damage, ultimately leading to endoplasmic reticulum stress, mitophagy and apoptosis. This research provides a new insight into interpretation of the interrelationship between microbiota disorder and duodenal toxicity under Cu exposure.
Collapse
Affiliation(s)
- Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Huayu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Crommen S, Rheinwalt KP, Plamper A, Simon MC, Rösler D, Fimmers R, Egert S, Metzner C. A Specifically Tailored Multistrain Probiotic and Micronutrient Mixture Affects Nonalcoholic Fatty Liver Disease-Related Markers in Patients with Obesity after Mini Gastric Bypass Surgery. J Nutr 2022; 152:408-418. [PMID: 34919684 DOI: 10.1093/jn/nxab392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is frequent among patients undergoing bariatric surgery. Beyond weight reduction, dietary supplements like micronutrients or probiotics that modify insulin resistance and lipotoxicity can be used to prevent or delay the progression of liver disease. OBJECTIVES We evaluated the effect of a dietary approach with a specifically tailored multistrain probiotic and micronutrient mixture compared with a basic care micronutrient supplement on serum alanine aminotransferase (ALAT) in obese patients after mini gastric bypass (MGB) surgery. METHODS This randomized, double-blind, controlled trial included 60 obese patients (age: 40 ± 10 y; BMI: 44 ± 3 kg/m²). Patients received a combination of specifically tailored multistrain probiotic powder and a specific micronutrient mixture (Pro+SM) or a control treatment consisting of a placebo and a basic care micronutrient mixture (Con+BM), with some micronutrients in lower doses than SM, for 12 wk after hospital discharge. Primary (serum ALAT) and secondary outcomes [serum aspartate aminotransferase (ASAT), fatty liver index, NAFLD fibrosis score, glucose metabolism, blood pressure (BP), heart rate] were assessed at week 0 and week 12. Data were analyzed using unpaired Student's t-tests or Mann-Whitney U tests to compare the changes due to each treatment to one another. RESULTS A total of 48 patients were included in the analyses. Changes in serum ALAT concentrations did not differ between groups. Compared with Con+BM, Pro+SM improved serum ASAT (difference: -8.0 U/L, 95% CI: -17.0, -4.0; P = 0.043), NAFLD fibrosis score (difference: -0.39; 95% CI: -0.78, 0; P = 0.048), serum triglycerides (difference: -22.8 mg/dL; 95% CI: -45.6, -0.1; P = 0.049) and the visceral adiposity index (difference: -0.70; 95% CI: -1.31, -0.08; P = 0.027). CONCLUSION Supplementation with a specifically tailored probiotic and micronutrient mixture improved NAFLD-related markers more than a basic micronutrient mixture in obese patients following MGB surgery. The trial was registered under clinicaltrials.gov as NCT03585413.
Collapse
Affiliation(s)
- Silke Crommen
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Karl Peter Rheinwalt
- Department of Bariatric, Metabolic and Plastic Surgery, St. Franziskus Hospital, Cologne, Germany
| | - Andreas Plamper
- Department of Bariatric, Metabolic and Plastic Surgery, St. Franziskus Hospital, Cologne, Germany
| | - Marie-Christine Simon
- Department of Nutrition and Food Science, Nutrition and Microbiome, University of Bonn, Bonn, Germany
| | - Daniela Rösler
- Bonn Education Association for Dietetics r.A., Cologne, Germany
| | - Rolf Fimmers
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Sarah Egert
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany.,Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Christine Metzner
- Bonn Education Association for Dietetics r.A., Cologne, Germany.,Department of Gastroenterology, Metabolic Disorders and Internal Intensive Care (Department of Medicine III), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
8
|
Li Y, Yi J, Zeng Q, Liu Y, Yang B, Liu B, Li Y, Mehmood K, Hussain R, Tang Z, Zhang H, Li Y. Zearalenone exposure mediated hepatotoxicity via mitochondrial apoptotic and autophagy pathways: Associated with gut microbiome and metabolites. Toxicology 2021; 462:152957. [PMID: 34537261 DOI: 10.1016/j.tox.2021.152957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Zearalenone (ZEN), a mycotoxin is frequently detected in different food products and has been widely studied for its toxicity. However, the underlying mechanisms of hepatotoxic effects, relationship between gut microbiome and liver metabolite mediated hepatotoxicity mechanisms induced by ZEN are still not clear. Here, we reported that the different microscopic changes like swelling of hepatocyte, disorganization of hepatocytes and extensive vacuolar degeneration were observed, and the mitochondrial functions decreased in exposed mice. Results exhibited up-regulation in expression of signals of apoptosis and autophagy in liver of treated mice via mitochondrial apoptotic and autophagy pathway (Beclin1/p62). The diversity of gut microbiome decreased and the values of various microbiome altered in treated mice, including 5 phyla (Chloroflexi, Sva0485, Methylomirabilota, MBNT15 and Kryptonia) and genera (Frankia, Lactococcus, Anaerolinea, Halomonas and Sh765B-TzT-35) significantly changed. Liver metabolism showed that the concentrations of 91 metabolite including lipids and lipid like molecules were significantly changed. The values of phosphatidylcholine, 2-Lysophosphatidylcholine and phosphatidate concentrations suggestive of abnormal glycerophosphate metabolism pathway were significantly increased in mice due to exposure to ZEN. In conclusion, the findings suggest that the disorders in gut microbiome and liver metabolites due to exposure to ZEN in mice may affect the liver.
Collapse
Affiliation(s)
- Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Machado AS, Oliveira JR, de F Lelis D, D Guimarães VH, de Paula AMB, Guimarães ALS, Brandi IV, de Carvalho BMA, da Costa DV, Vieira CR, Pereira UA, de Oliveira Costa T, Andrade JMO, Dos Santos RAS, Santos SHS. Oral angiotensin-(1-7) peptide modulates intestinal microbiota improving metabolic profile in obese mice. Protein Pept Lett 2021; 28:1127-1137. [PMID: 34397321 DOI: 10.2174/0929866528666210816115645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is a serious health problem which dysregulate Renin-Angiotensin System and intestinal microbiota. OBJECTIVE The present study aimed to evaluate the Angiotensin-(1-7) [ANG-(1-7)] oral formulation effects on obese mice intestinal microbiota. METHODS Mice were divided into four groups: obese and non-obese treated with ANG-(1-7) and obese and non-obese without ANG-(1-7) during four weeks. RESULTS We observed a significant decrease in the fasting plasma glucose, total cholesterol, triglycerides, and Low-density lipoprotein levels and increased High-density lipoprotein in animals treated with ANG-(1-7). The histological analysis showed intestinal villi height reduction in mice treated with ANG-(1-7). Additionally, increased Bacteroidetes and decreased Firmicutes (increased Bacteroidetes/Firmicutes ratio) and Enterobacter cloacae populations were observed in the High-Fat Diet + ANG-(1-7) group. Receptor toll-like 4 (TLR4) intestinal mRNA expression was reduced in the HFD+ ANG-(1-7) group. Finally, the intestinal expression of the neutral amino acid transporter (B0AT1) was increased in animals treated with ANG-(1-7), indicating a possible mechanism associated with tryptophan uptake. CONCLUSION The results of the present study suggest for the first time an interaction between oral ANG-(1-7) and intestinal microbiota modulation.
Collapse
Affiliation(s)
- Amanda S Machado
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Montes Claros, Minas Gerais, Brazil
| | - Janaína R Oliveira
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Montes Claros, Minas Gerais, Brazil
| | - Deborah de F Lelis
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo D Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Montes Claros, Minas Gerais, Brazil
| | - Alfredo M B de Paula
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Montes Claros, Minas Gerais, Brazil
| | - André L S Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Montes Claros, Minas Gerais, Brazil
| | - Igor V Brandi
- Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Bruna Mara A de Carvalho
- Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Diego Vicente da Costa
- Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Cláudia Regina Vieira
- Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Ulisses Alves Pereira
- Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Theles de Oliveira Costa
- Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - João M O Andrade
- Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Robson A S Dos Santos
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sérgio H S Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|