El-Fakharany EM, Elsharkawy WB, El-Maradny YA, El-Gendi H. Moringa oleifera seed methanol extract with consolidated antimicrobial, antioxidant, anti-inflammatory, and anticancer activities.
J Food Sci 2024;
89:5130-5149. [PMID:
38955793 DOI:
10.1111/1750-3841.17223]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
The wide biological activity of the Moringa oleifera represents a potential opportunity for developing selective cancer treatment drugs. The bioactive phytochemicals in Moringa seed extract (MSE) indicated large numbers of phytochemicals (21 compounds) with dominant abundance for cycloisolongifolene, 8,9-dehydro-9-vinyl, and chamazulene accounting for 12.7% and 12.19% of the total detected compounds. The MSE showed a potent anticancer effect toward Caco-2, MDA, and HepG-2 cells with half-maximal inhibitory concentration (IC50) values of 9.15 ± 1.18, 4.85 ± 0.11, and 7.36 ± 0.22 µg/mL, respectively, with higher safety (≥31-folds) toward normal human cells (IC50 of 150.7 ± 11.11 µg/mL). It appears that MSE stimulates selective-dose-dependent cell shrinkage, and nuclear condensation in the tumor cells, which finally induces the apoptosis pathway to increase its anticancer action. Additionally, MSE showed a potent capability to stimulate cell cycle arrest in both main checkpoint phases (G0/G1 and G2/M) of cell population growth. The apoptotic death stimulation was confirmed through upregulation of tumor protein p53 (p53) and cyclin-dependent kinase inhibitor p21 (p21) expression by more than three- to sixfold and downregulation of B-cell lymphoma 2 expression (threefold) in MSE-treated cells compared to 5-fluorouracil (5-FU)-treated tumor cells. Furthermore, the MSE revealed strong anti-inflammatory activity with significant antioxidant activity by lowering nitric oxide levels and enhancing the superoxide dismutase activity. On the other hand, the MSE revealed broad-spectrum antibacterial activity in a dose-dependent manner against Staphylococcus aureus minimum inhibitory concentration (MIC of 1.25 mg/mL), followed by Salmonella typhimurium (MIC of 1.23 mg/mL), whereas Escherichia coli was the least sensitive to MSE activity (MIC of 22.5 mg/mL) with significant antibiofilm activity against sensitive pathogens.
Collapse