1
|
Li Z, Li M, Sun S, Bin Y, Zuo S, Huo R, Song J, Xue G, Lin X, Wu J. APOE modulates ferroptosis to drive macrophage polarization toward the M2 type and enhance PTC migration and invasion. Immunobiology 2025; 230:152900. [PMID: 40245754 DOI: 10.1016/j.imbio.2025.152900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Previous studies have found that Apolipoprotein E (APOE) plays a crucial role in invasion and migration of papillary thyroid carcinoma (PTC) cells and enhance M2 macrophage polarization. Ferroptosis has been implicated in development of various tumors and their treatment resistance, and studies have shown that APOE is involved in ferroptosis regulation. However, whether APOE promotes PTC progression through ferroptosis modulation remains unclear. This study aims to investigate the ferroptosis-related mechanisms through which APOE facilitates cell invasion, migration, and macrophage polarization in PTC. METHODS The expression levels of APOE, Sodium-dependent cystine/glutamate exchanger (xCT), Glutathione Peroxidase 4 (GPX4), Ferritin Heavy Chain 1 (FTH1), and Fe2+ in PTC tissues were detected using immunohistochemistry, Prussian blue staining, and western blot. The effects and mechanisms of APOE on ferroptosis were further examined through a series of experiments, including immunofluorescence, electron microscopy, RT-qPCR, western blot, and colorimetric assays. Additionally, In vivo experiments were conducted to assess the effect of APOE silencing on ferroptosis. The interaction between ferroptosis and macrophages in regulating PTC cell invasion and migration was validated using assays.co-culture systems, wound healing assays, and Transwell migration assays. RESULTS In PTC tissues, Fe2+ accumulation was lower than in adjacent normal tissues, while the expression of APOE, xCT, GPX4, and FTH1 was significantly higher compared to adjacent normal tissues. Functional assays demonstrated that APOE inhibited ferroptosis in PTC cells, potentially by regulating ferroptosis through the PI3K/AKT1 pathway and modulating Fe2+ accumulation. Furthermore, APOE enhanced the invasion and migration abilities of PTC cells by promoting M2 macrophage polarization via ferroptosis inhibition. CONCLUSION This study reveals that APOE regulates ferroptosis through the PI3K/AKT1 pathway, thereby driving macrophage polarization toward the M2 phenotype, which in turn promotes the invasion and migration of PTC.
Collapse
Affiliation(s)
- Ziwen Li
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Min Li
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China; Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Sinuo Sun
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Yu Bin
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Suwei Zuo
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Ronghua Huo
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Jiayin Song
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China; Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Gang Xue
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China; Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China,.
| | - Xu Lin
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China.
| | - Jingfang Wu
- Department of Morphology Laboratory, Zhangjiakou Key Laboratory, Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
2
|
Zhang S, Hong HI, Mak VCY, Zhou Y, Lu Y, Zhuang G, Cheung LWT. Vertical inhibition of p110α/AKT and N-cadherin enhances treatment efficacy in PIK3CA-aberrated ovarian cancer cells. Mol Oncol 2025; 19:1132-1154. [PMID: 39543937 PMCID: PMC11977650 DOI: 10.1002/1878-0261.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha [PIK3CA, encoding PI3Kalpha (also known as p110α)] is one of the most commonly aberrated genes in human cancers. In serous ovarian cancer, PIK3CA amplification is highly frequent but PIK3CA point mutation is rare. However, whether PIK3CA amplification and PIK3CA driver mutations have the same functional impact in the disease is unclear. Here, we report that both PIK3CA amplification and E545K mutation are tumorigenic. While the protein kinase B (AKT) signaling axis was activated in both E545K knock-in cells and PIK3CA-overexpressing cells, the mitogen-activated protein kinase 3/1 (ERK1/2) pathway was induced selectively by E545K mutation but not PIK3CA amplification. Intriguingly, AKT signaling in these PIK3CA-aberrated cells increased transcriptional coactivator YAP1 (YAP) Ser127 phosphorylation and thereby cytoplasmic YAP levels, which in turn increased cell migration through Ras-related C3 botulinum toxin substrate 1 (RAC1) activation. In addition to the altered YAP signaling, AKT upregulated N-cadherin expression, which also contributed to cell migration. Pharmacological inhibition of N-cadherin reduced cell migratory potential. Importantly, co-targeting N-cadherin and p110α/AKT caused additive reduction in cell migration in vitro and metastases formation in vivo. Together, this study reveals the molecular pathways driven by the PIK3CA aberrations and the exploitable vulnerabilities in PIK3CA-aberrated serous ovarian cancer cells.
Collapse
Affiliation(s)
- Shibo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhouChina
| | - Hei Ip Hong
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| | - Victor C. Y. Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| | - Yiling Lu
- Division of Cancer Medicine, Department of Genomic MedicineUT MD Anderson Cancer CentreHoustonTXUSA
| | - Guanglei Zhuang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer InstituteShanghai Jiao Tong University School of MedicineChina
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji HospitalShanghai Jiao Tong University School of MedicineChina
| | - Lydia W. T. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongChina
| |
Collapse
|
3
|
Luo J, Zhang C, Wu M, Yao X, Duan Y, Li Y. Excitation/emission-enhanced heterostructure photonic crystal array synergizing with "DD-A" FRET entropy-driven circuit for high-resolution and ultrasensitive analysis of ctDNA. Biosens Bioelectron 2024; 263:116615. [PMID: 39106690 DOI: 10.1016/j.bios.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Circulating tumor DNA (ctDNA) is an emerging biomarker of liquid biopsy for cancer. But it remains a challenge to achieve simple, sensitive and specific detection of ctDNA because of low abundance and single-base mutation. In this work, an excitation/emission-enhanced heterostructure photonic crystal (PC) array synergizing with entropy-driven circuit (EDC) was developed for high-resolution and ultrasensitive analysis of ctDNA. The donor donor-acceptor FÖrster resonance energy transfer ("DD-A" FRET) was integrated in EDC based on the introduction of simple auxiliary strand, which exhibited higher sensitivity than that of traditional EDC. The heterostructure PC array was constructed with the bilayer periodic nanostructures of nanospheres. Because the heterostructure PC has the adjustable dual photonic band gaps (PBGs) by changing nanosphere sizes, and the "DD-A" FRET can offer the excitation and emission peak with enough distance, it helps the successful matches between the dual PBGs of heterostructure PC and the excitation/emission peaks of "DD-A" FRET; thus, the fluorescence from EDC can be enhanced effectively from both of excitation and emission processes on heterostructure PC array. Besides, high-resolution of single-base mutation was obtained through the strict recognition of EDC. Benefiting from the specific spectrum-matched and synergetic amplification of heterostructure PC and EDC with "DD-A" FRET, the proposed array obtained ultrasensitive detection of ctDNA with LOD of 12.9 fM, and achieved the analysis of mutation frequency as low as 0.01%. Therefore, the proposed strategy has the advantages of simple operation, mild conditions (enzyme-free and isothermal), high-sensitivity, high-resolution and high-throughput analysis, showing potential in bioassay and clinical application.
Collapse
Affiliation(s)
- Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chuyan Zhang
- Precision Medicine Translational Research Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Xiuyuan Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
4
|
Fu J, Li D, Zhang L, Maghsoudloo M, Cheng J, Fu J. Comprehensive analysis, diagnosis, prognosis, and cordycepin (CD) regulations for GSDME expressions in pan-cancers. Cancer Cell Int 2024; 24:279. [PMID: 39118110 PMCID: PMC11312966 DOI: 10.1186/s12935-024-03467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The Gasdermin E gene (GSDME) plays roles in deafness and cancers. However, the roles and mechanisms in cancers are complex, and the same gene exhibits different mechanisms and actions in different types of cancers. Online databases, such as GEPIA2, cBioPortal, and DNMIVD, were used to comprehensively analyze GSDME profiles, DNA methylations, mutations, diagnosis, and prognosis in patients with tumor tissues and matched healthy tissues. Western blotting and RT-PCR were used to monitor the regulation of GSDME by Cordycepin (CD) in cancer cell lines. We revealed that GSDME expression is significantly upregulated in eight cancers (ACC, DLBC, GBM, HNSC, LGG, PAAD, SKCM, and THYM) and significantly downregulated in seven cancers (COAD, KICH, LAML, OV, READ, UCES, and UCS). The overall survival was longer only in ACC, but shorter in four cancers, including COAD, KIRC, LIHC, and STAD, when GSDME was highly expressed in cancers compared with the corresponding normal tissues. Moreover, the high expression of GSDME was negatively correlated with the poor prognosis of ACC, while the low expression of GSDME was negatively correlated with the poor prognosis of COAD, suggesting that GSDME might serve as a good prognostic factor in these two cancer types. Accordingly, results indicated that the DNA methylations of those 7 CpG sites constitute a potentially effective signature to distinguish different tumors from adjacent healthy tissues. Gene mutations for GSDME were frequently observed in a variety of tumors, with UCES having the highest frequency. Moreover, CD treatment inhibited GSDME expression in different cancer cell lines, while overexpression of GSDME promoted cell migration and invasion. Thus, we have systematically and successfully clarified the GSDME expression profiles, diagnostic values, and prognostic values in pan-cancers. Targeting GSDME with CD implies therapeutic significance and a mechanism for antitumor roles in some types of cancers via increasing the sensitivity of chemotherapy. Altogether, our study may provide a strategy and biomarker for clinical diagnosis, prognostics, and treatment of cancers by targeting GSDME.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China
- Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu Province, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China.
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China.
| |
Collapse
|
5
|
Ghosh A, Moorthy A. Prevalence and effect of PIK3CA H1047R somatic mutation among Indian head and neck cancer patients. Saudi J Biol Sci 2024; 31:104029. [PMID: 38873617 PMCID: PMC11170471 DOI: 10.1016/j.sjbs.2024.104029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
PIK3CA is one among the several mutated genes in cancer, including head and neck squamous cell carcinoma (HNSCC). H1047R is a hotspot somatic mutation in PIK3CA that occurs most frequently in several forms of cancers. Distribution of PIK3CA H1047R mutation in Indian HNSCC patients was screened and its effect on disease progression and response to treatment was analysed in this study. Genomic DNA was extracted from tumour biopsies of HNSCC patients (n = 48) and polymerase chain reaction coupled restriction fragment length polymorphism (PCR-RFLP) technique was used to screen for the mutation. Overall survival (OS) and Progression-free survival (PFS) of the patients were calculated in order to study effect of this mutation on survival and response to treatment respectively. Results showed that irrespective of patients' criteria, twenty-five patients (52 %) carried a heterozygous form of mutation (His/Arg) and the rest (48 %) were wild type (His/His). The mean OS of the cohort with the mutation was 20.451 months (SE ± 1.710 months) while 26.31 months (SE ± 2.431) was in wild type population. PFS of the patients with the mutation was 18.612 months (SE ± 2.072), and for the wild type population, it was 26.31 months (SE ± 2.431). These observations suggest that Indian HNSCC patients with PIK3CA H1047R mutation have poor prognosis.
Collapse
Affiliation(s)
| | - Anbalagan Moorthy
- Corresponding author at: School of Bioscience and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
6
|
Ahmad H, Ali A, Ali R, Khalil AT, Khan I, Khan MM, Alorini M. Mutational Landscape and In-Silico Analysis of TP53, PIK3CA, and PTEN in Patients with Breast Cancer from Khyber Pakhtunkhwa. ACS OMEGA 2023; 8:43318-43331. [PMID: 38024667 PMCID: PMC10652387 DOI: 10.1021/acsomega.3c07472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Herein, we report the mutational spectrum of three breast cancer candidate genes (TP53, PIK3CA, and PTEN) using WES for identifying potential biomarkers. The WES data were thoroughly analyzed using SAMtools for variant calling and identification of the mutations. Various bioinformatic tools (SIFT, PolyPhen-2, Mutation Taster, ISPRED-SEQ, SAAFEQ-SEQ, ConSurf, PROCHECK etc.) were used to determine the pathogenicity and nature of the SNVs. Selected interaction site (IS) mutations were visualized in PyMOL after building 3D structures in Swiss-Model. Ramachandran plots were generated by using the PROCHECK server. The selected IS mutations were subjected to molecular dynamic simulation (MDS) studies using Gromacs 4.5. STRING and GeneMANIA were used for the prediction of gene-gene interactions and pathways. Our results revealed that the luminal A molecular subtype of the breast cancer was most common, whereas a high percentage of was Her2 negatives. Moreover, the somatic mutations were more common as compared to the germline mutations in TP53, PIK3CA, and PTEN. 20% of the identified mutations are reported for the first time from Khyber Pakhtunkhwa. In the enrolled cohort, 23 mutations were nonsynonymous SNVs. The frequency of mutations was the highest in PIK3CA, followed by TP53 and PTEN. A total of 13 mutations were found to be highly pathogenic. Four novel mutations were identified on PIK3CA and one each on PTEN and TP53. SAAFEQ-SEQ predicted the destabilizing effect for all mutations. ISPRED-SEQ predicted 9 IS mutations (6 on TP53 and 3 on PIK3CA), whereas no IS mutation was predicted on PTEN. The TP53 IS mutations were TP53R43H, TP53Y73X, TP53K93Q, TP53K93R, TP53D149E, and TP53Q199X; whereas for PIK3CA, the IS mutations were PIK3CAL156V, PIK3CAM610K, and PIK3CAH1047R. Analysis from the ConSurf Web server revealed five SNVs with a highly conserved status (conservation score 9) across TP53 and PTEN. TP53P33R was found predominant in the grade 3 tumors, whereas PTENp.C65S was distributed on ER+, ER-, PR+, PR-, Her2+, and Her2- patients. TP53p.P33R mutation was found to be recurring in the 14/19 (73.6%) patients and, therefore, can be considered as a potential biomarker. Finally, these mutations were studied in the context of their potential association with different hormonal and social factors.
Collapse
Affiliation(s)
- Hilal Ahmad
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar 25000, Pakistan
| | - Asif Ali
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar, Peshawar 25000, Pakistan
- College
of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
- School
of Medicine, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Roshan Ali
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar 25000, Pakistan
| | - Ali Talha Khalil
- Department
of Pathology, Lady Reading Hospital Medical
Teaching Institution (LRH-MTI), Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Ishaq Khan
- Institute
of Basic Medical Sciences Khyber Medical University, Khyber Medical University, Phase V, Peshawar 25000, Pakistan
| | - Mah Muneer Khan
- General Surgery, Khyber Teaching Hospital Medical Teaching Institute, Peshawar 25000, Pakistan
| | - Mohammed Alorini
- Department
of Basic Medical Sciences, Unaizah College of Medicine and Medical
Sciences, Qassim University, Unaizah, 56219, Saudi Arabia
| |
Collapse
|
7
|
Fu S, Fu J, Mobasher-Jannat A, Jadidi K, Li Y, Chen R, Imani S, Cheng J. Novel pathogenic CERKL variant in Iranian familial with inherited retinal dystrophies: genotype-phenotype correlation. 3 Biotech 2023; 13:166. [PMID: 37162806 PMCID: PMC10163994 DOI: 10.1007/s13205-023-03535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) include a large chronic heterogeneity genetic disease. While many disease-causing pathogenic variants were involved in the progression of IRD, the Ceramide Kinase Like (CERKL) gene variant in Iranian patients is not well characterized. In this study, a consanguineous Iranian family with three generations was recruited whom presented with the clinical diagnosis of autosomal recessive IRD. By targeted next-generation sequencing (TGS) and Sanger sequencing, the proband was found to have a novel, pathological homozygous deletion variant c.560_568del (p.187_190del) of the CERKL gene (NM_001030311.2) that co-segregated with the disease in all affected family members. The Cerkl is highly expressed in the later four developmental retinal stages, playing a vital role in retina degeneration. Therefore, the identification of a novel, homozygous deletion CERKL variant c.560_568del (p.187_190del) in an IRD familial cohort descent provides insights into the molecular pathogenesis of IRD and facilitates genetic counseling and disease prediction.
Collapse
Affiliation(s)
- Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
- School of Medicine, Baylor College of Medicine, Houston, TX USA
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| | | | - Khosrow Jadidi
- Department of Ophthalmology, Bina Eye Hospital Research Center, Tehran, Iran
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Saber Imani
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000 People’s Republic of China
| |
Collapse
|
8
|
Analyzing the Expression of Ovarian Cancer Genes in PA-1 Cells Lines After the Treatment of Thymoquinone. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2023. [DOI: 10.1007/s40944-022-00699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Ma W, Han X, Shasaltaneh MD, Hosseinifard H, Maghsoudloo M, Zhang Y, Weng Q, Wang Q, Wen Q, Imani S. The p110α/ΔNp63α complex mutations in triple-negative breast cancer: Potential targets for transcriptional-based therapies. Tumour Biol 2023; 45:127-146. [PMID: 37980588 DOI: 10.3233/tub-230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Hotspot mutations occurring in the p110α domain of the PIK3CA gene, specifically p110αH1047R/L increase tumor metastasis and cell motility in triple-negative breast cancer (TNBC). These mutations also affect the transcriptional regulation of ΔNp63α, a significant isoform of the p53 protein involved in cancer progression. This study attempts to investigate the transcriptional impact of p110αH1047R/L mutations on the PIK3CA/ΔNp63α complex in TNBC carcinogenesis. METHODS We performed site-directed mutagenesis to introduce p110αH1047R/L mutations and evaluated their oncogenic effects on the growth, invasion, migration, and apoptosis of three different TNBC cell lines in vitro. We investigated the impact of these mutations on the p110α/ΔNp63α complex and downstream transcriptional signaling pathways at the gene and protein levels. Additionally, we used bioinformatics techniques such as molecular dynamics simulations and protein-protein docking to gain insight into the stability and structural changes induced by the p110αH1047R/L mutations in the p110α/ΔNp63α complex and downstream signaling pathway. RESULTS The presence of PIK3CA oncogenic hotspot mutations in the p110α/ΔNp63α complex led to increased scattering of TNBC cells during growth, migration, and invasion. Our in vitro mutagenesis assay showed that the p110αH1047R/L mutations activated the PI3K-Akt-mTOR and tyrosine kinase receptor pathways, resulting in increased cell proliferation, invasion, and apoptosis in TNBC cells. These mutations decreased the repressing effect of ΔNp63α on the p110α kinase domain, leading to the enhancement of downstream signaling pathways of PI3K and tyrosine kinase receptors and oncogenic transformation in TNBC. Additionally, our findings suggest that the physical interaction between the DNA binding domain of ΔNp63α and the kinase domain of p110α may be partially impaired, potentially leading to alterations in the conformation of the p110α/ΔNp63α complex. CONCLUSION Our findings suggest that targeting the p110αH1047R/L mutations in TNBC could be a promising strategy for developing transcriptional-based therapies. Restoring the interaction between ΔNp63α and the p110α kinase domain, which is disrupted by these mutations, may provide a new approach to treating TNBC.
Collapse
Affiliation(s)
- Wenqiong Ma
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingping Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | | | - Hossein Hosseinifard
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuqin Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiao Weng
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Liu S, Yang L, Fu J, Li T, Zhou B, Wang K, Wei C, Fu J. Comprehensive analysis, immune, and cordycepin regulation for SOX9 expression in pan-cancers and the matched healthy tissues. Front Immunol 2023; 14:1149986. [PMID: 37020558 PMCID: PMC10067558 DOI: 10.3389/fimmu.2023.1149986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
SRY-box transcription factor 9 (SOX9) (OMIM 608160) is a transcription factor. The expression of SOX9 in pan-cancers and the regulation by small molecules in cancer cell lines are unclear. In the current study, we comprehensively analyzed the expression of SOX9 in normal tissues, tumor tissues and their matched healthy tissues in pan-cancers. The study examined the correlation between immunomodulators and immune cell infiltrations in normal and tumor tissues. Cordycepin (CD), an adenosine analog for SOX9 expression regulation, was also conducted on cancer cells. The results found that SOX9 protein is expressed in a variety of organs, including high expression in 13 organs and no expression in only two organs; in 44 tissues, there was high expression in 31 tissues, medium expression in four tissues, low expression in two tissues, and no expression in the other seven tissues. In pan-cancers with 33 cancer types, SOX9 expression was significantly increased in fifteen cancers, including CESC, COAD, ESCA, GBM, KIRP, LGG, LIHC, LUSC, OV, PAAD, READ, STAD, THYM, UCES, and UCS, but significantly decreased in only two cancers (SKCM and TGCT) compared with the matched healthy tissues. It suggests that SOX9 expression is upregulated in the most cancer types (15/33) as a proto-oncogene. The fact that the decrease of SOX9 expression in SKCM and the increase of SOX9 in the cell lines of melanoma inhibit tumorigenicity in both mouse and human ex vivo models demonstrates that SOX9 could also be a tumor suppressor. Further analyzing the prognostic values for SOX9 expression in cancer individuals revealed that OS is long in ACC and short in LGG, CESC, and THYM, suggesting that high SOX9 expression is positively correlated with the worst OS in LGG, CESC, and THYM, which could be used as a prognostic maker. In addition, CD inhibited both protein and mRNA expressions of SOX9 in a dose-dependent manner in 22RV1, PC3, and H1975 cells, indicating CD's anticancer roles likely via SOX9 inhibition. Moreover, SOX9 might play an important role in tumor genesis and development by participating in immune infiltration. Altogether, SOX9 could be a biomarker for diagnostics and prognostics for pan-cancers and an emerging target for the development of anticancer drugs.
Collapse
Affiliation(s)
- Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Lisha Yang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Ting Li
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Gynecology and Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
He J, Liu S, Tan Q, Liu Z, Fu J, Li T, Wei C, Liu X, Mei Z, Cheng J, Wang K, Fu J. Antiviral Potential of Small Molecules Cordycepin, Thymoquinone, and N6, N6-Dimethyladenosine Targeting SARS-CoV-2 Entry Protein ADAM17. Molecules 2022; 27:molecules27249044. [PMID: 36558177 PMCID: PMC9781528 DOI: 10.3390/molecules27249044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2 of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely relevant to highly expressed ADAM17. However, ADAM17 regulation in SARS-CoV-2 invasion and its role on small molecules are unclear. Here, we evaluated the ADAM17 inhibitory effects of cordycepin (CD), thymoquinone (TQ), and N6, N6-dimethyladenosine (m62A), on cancer cells and predicted the anti-COVID-19 potential of the three compounds and their underlying signaling pathways by network pharmacology. It was found that CD, TQ, and m62A repressed the ADAM17 expression upon different cancer cells remarkably. Moreover, CD inhibited GFP-positive syncytia formation significantly, suggesting its potential against SARS-CoV-2. Pharmacological analysis by constructing CD-, TQ-, and m62A-based drug-target COVID-19 networks further indicated that ADAM17 is a potential target for anti-COVID-19 therapy with these compounds, and the mechanism might be relevant to viral infection and transmembrane receptors-mediated signal transduction. These findings imply that ADAM17 is of potentially medical significance for cancer patients infected with SARS-CoV-2, which provides potential new targets and insights for developing innovative drugs against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kai Wang
- Correspondence: (J.C.); (K.W.); (J.F.)
| | | |
Collapse
|
12
|
Fu J, Liu S, Tan Q, Liu Z, Qian J, Li T, Du J, Song B, Li D, Zhang L, He J, Guo K, Zhou B, Chen H, Fu S, Liu X, Cheng J, He T, Fu J. Impact of TMPRSS2 Expression, Mutation Prognostics, and Small Molecule (CD, AD, TQ, and TQFL12) Inhibition on Pan-Cancer Tumors and Susceptibility to SARS-CoV-2. Molecules 2022; 27:molecules27217413. [PMID: 36364238 PMCID: PMC9658242 DOI: 10.3390/molecules27217413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
As a cellular protease, transmembrane serine protease 2 (TMPRSS2) plays roles in various physiological and pathological processes, including cancer and viral entry, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we conducted expression, mutation, and prognostic analyses for the TMPRSS2 gene in pan-cancers as well as in COVID-19-infected lung tissues. The results indicate that TMPRSS2 expression was highest in prostate cancer. A high expression of TMPRSS2 was significantly associated with a short overall survival in breast invasive carcinoma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), while a low expression of TMPRSS2 was significantly associated with a short overall survival in lung adenocarcinoma (LUAD), demonstrating TMPRSS2 roles in cancer patient susceptibility and severity. Additionally, TMPRSS2 expression in COVID-19-infected lung tissues was significantly reduced compared to healthy lung tissues, indicating that a low TMPRSS2 expression may result in COVID-19 severity and death. Importantly, TMPRSS2 mutation frequency was significantly higher in prostate adenocarcinoma (PRAD), and the mutant TMPRSS2 pan-cancer group was significantly associated with long overall, progression-free, disease-specific, and disease-free survival rates compared to the wild-type (WT) TMPRSS2 pan-cancer group, demonstrating loss of functional roles due to mutation. Cancer cell lines were treated with small molecules, including cordycepin (CD), adenosine (AD), thymoquinone (TQ), and TQFL12, to mediate TMPRSS2 expression. Notably, CD, AD, TQ, and TQFL12 inhibited TMPRSS2 expression in cancer cell lines, including the PC3 prostate cancer cell line, implying a therapeutic role for preventing COVID-19 in cancer patients. Together, these findings are the first to demonstrate that small molecules, such as CD, AD, TQ, and TQFL12, inhibit TMPRSS2 expression, providing novel therapeutic strategies for preventing COVID-19 and cancers.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qi Tan
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhiying Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Ting Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Basic Medical School, Southwest Medical University, Luzhou 646000, China
| | - Lianmei Zhang
- Department of Pathology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Kan Guo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Gynecology and Obstetrics, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Hanchun Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha 410013, China
| | - Shangyi Fu
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Tao He
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Institute for Cancer Medicine, Basic Medical School, Southwest Medical University, Luzhou 646000, China
- Correspondence: (T.H.); (J.F.); Tel./Fax: +86-830-3160283 (J.F.)
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Correspondence: (T.H.); (J.F.); Tel./Fax: +86-830-3160283 (J.F.)
| |
Collapse
|
13
|
Talib WH, AlHur MJ, Al.Naimat S, Ahmad RE, Al-Yasari AH, Al-Dalaeen A, Thiab S, Mahmod AI. Anticancer Effect of Spices Used in Mediterranean Diet: Preventive and Therapeutic Potentials. Front Nutr 2022; 9:905658. [PMID: 35774546 PMCID: PMC9237507 DOI: 10.3389/fnut.2022.905658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, with almost 10 million cancer-related deaths worldwide in 2020, so any investigation to prevent or cure this disease is very important. Spices have been studied widely in several countries to treat different diseases. However, studies that summarize the potential anticancer effect of spices used in Mediterranean diet are very limited. This review highlighted chemo-therapeutic and chemo-preventive effect of ginger, pepper, rosemary, turmeric, black cumin and clove. Moreover, the mechanisms of action for each one of them were figured out such as anti-angiogenesis, antioxidant, altering signaling pathways, induction of cell apoptosis, and cell cycle arrest, for several types of cancer. The most widely used spice in Mediterranean diet is black pepper (Piper nigrum L). Ginger and black cumin have the highest anticancer activity by targeting multiple cancer hallmarks. Apoptosis induction is the most common pathway activated by different spices in Mediterranean diet to inhibit cancer. Studies discussed in this review may help researchers to design and test new anticancer diets enriched with selected spices that have high activities.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
- *Correspondence: Wamidh H. Talib
| | - Mallak J. AlHur
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Sumaiah Al.Naimat
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Rawand E. Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | | | - Anfal Al-Dalaeen
- Department of Clinical Nutrition and Dietetics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Samar Thiab
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
14
|
Song B, Shen S, Fu S, Fu J. HSPA6 and its role in cancers and other diseases. Mol Biol Rep 2022; 49:10565-10577. [PMID: 35666422 DOI: 10.1007/s11033-022-07641-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Heat Shock Protein Family A (Hsp70) Member 6 (HSPA6) (Online Mendelian Inheritance in Man: 140555) belongs to the HSP70 family and is a partially conserved inducible protein in mammals. The HSPA6 gene locates on the human chromosome 1q23.3 and encodes a protein containing two important structural domains: The N-terminal nucleotide-binding domain and the C-terminal substrate-binding domain. Currently, studies have found that HSPA6 not only plays a role in the tumorigenesis and tumor progresses but also causes non-tumor-related diseases. Furthermore, HSPA6 exhibits to inhibit tumorigenesis and tumor progression in some types of cancers but promotes in others. Even though HSPA6 research has increased, its exact roles and mechanisms are still unclear. This article reviews the structure, expression, function, research progress, possible mechanism, and perspective of HSPA6 in cancers and other diseases, highlighting its potential role as a targeted therapeutic and prognostic marker.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shiyi Shen
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- School of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
15
|
Homayoonfal M, Asemi Z, Yousefi B. Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis. Cell Mol Biol Lett 2022; 27:21. [PMID: 35236304 PMCID: PMC8903697 DOI: 10.1186/s11658-022-00320-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Despite great advances, therapeutic approaches of osteosarcoma, the most prevalent class of preliminary pediatric bone tumors, as well as bone-related malignancies, continue to demonstrate insufficient adequacy. In recent years, a growing trend toward applying natural bioactive compounds, particularly phytochemicals, as novel agents for cancer treatment has been observed. Bioactive phytochemicals exert their anticancer features through two main ways: they induce cytotoxic effects against cancerous cells without having any detrimental impact on normal cell macromolecules such as DNA and enzymes, while at the same time combating the oncogenic signaling axis activated in tumor cells. Thymoquinone (TQ), the most abundant bioactive compound of Nigella sativa, has received considerable attention in cancer treatment owing to its distinctive properties, including apoptosis induction, cell cycle arrest, angiogenesis and metastasis inhibition, and reactive oxygen species (ROS) generation, along with inducing immune system responses and reducing side effects of traditional chemotherapeutic drugs. The present review is focused on the characteristics and mechanisms by which TQ exerts its cytotoxic effects on bone malignancies.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|