1
|
Shirani N, Abdi N, Chehelgerdi M, Yaghoobi H, Chehelgerdi M. Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers. Front Cell Dev Biol 2025; 13:1485422. [PMID: 39925739 PMCID: PMC11802832 DOI: 10.3389/fcell.2025.1485422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Exosomes, as key mediators of intercellular communication, have been increasingly recognized for their role in the oncogenic processes, particularly in facilitating drug resistance. This article delves into the emerging evidence linking exosomal lncRNAs to the modulation of drug resistance mechanisms in cancers such as ovarian, cervical, and endometrial cancer. It synthesizes current research findings on how these lncRNAs influence cancer cell survival, tumor microenvironment, and chemotherapy efficacy. Additionally, the review highlights potential therapeutic strategies targeting exosomal lncRNAs, proposing a new frontier in overcoming drug resistance. By mapping the interface of exosomal lncRNAs and drug resistance, this article aims to provide a comprehensive understanding that could pave the way for innovative treatments and improved patient outcomes in female reproductive system cancers.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Neda Abdi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
2
|
Singh G, Darwin R, Panda KC, Afzal SA, Katiyar S, Dhakar RC, Mani S. Gene expression and hormonal signaling in osteoporosis: from molecular mechanisms to clinical breakthroughs. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-36. [PMID: 39729311 DOI: 10.1080/09205063.2024.2445376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Osteoporosis is well noted to be a universal ailment that realization impaired bone mass and micro architectural deterioration thus enhancing the probability of fracture. Despite its high incidence, its management remains highly demanding because of the multifactorial pathophysiology of the disease. This review highlights recent findings in the management of osteoporosis particularly, gene expression and hormonal control. Some of the newest approaches regarding the subject are described, including single-cell RNA sequencing and long non-coding RNAs. Also, the review reflects new findings on hormonal signaling and estrogen and parathyroid hormone; patient-specific approaches due to genetic and hormonal variation. Potential new biomarkers and AI comprised as factors for improving the ability to anticipate and manage fractures. These hold great potential of new drugs, combination therapies and gene based therapies for osteoporosis in the future. Further studies and cooperation of scientists and clinicians will help to apply such novelties into practical uses in the sphere of medicine in order to enhance the treatment of patients with osteoporosis.
Collapse
Affiliation(s)
- Gurinderdeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Ronald Darwin
- School of Pharmaceutical Sciences, Vels Institute of Science Technology & Advanced Studies, Chennai, India
| | - Krishna Chandra Panda
- Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur, India
| | - Shaikh Amir Afzal
- Department of Pharmaceutics, SCES's Indira College of Pharmacy, Pune, India
| | - Shashwat Katiyar
- Department of Biochemistry, School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Ram C Dhakar
- SRG Hospital and Medical College, Jhalawar, India
| | - Sangeetha Mani
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
3
|
Jiang C, Wang P, Tan Z, Zhang Y. Long non-coding RNAs in bone formation: Key regulators and therapeutic prospects. Open Life Sci 2024; 19:20220908. [PMID: 39156986 PMCID: PMC11330173 DOI: 10.1515/biol-2022-0908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 08/20/2024] Open
Abstract
Recent scientific investigations have revealed the intricate mechanisms underlying bone formation, emphasizing the essential role of long non-coding RNAs (lncRNAs) as critical regulators. This process, essential for skeletal strength and functionality, involves the transformation of mesenchymal stem cells into osteoblasts and subsequent deposition of bone matrix. lncRNAs, including HOX transcript antisense RNA (HOTAIR), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), differentiation antagonizing non-coding RNA (DANCR), and maternally expressed gene 3 (MEG3), have emerged as prominent players in this regulatory network. HOTAIR modulates osteoblast differentiation by interacting with chromatin-modifying enzymes, while MALAT1 regulates osteogenic differentiation through microRNA interactions. DANCR collaborates with Runx2 to fine-tune osteoblast differentiation, and MEG3 orchestrates multiple signaling pathways crucial for bone formation. Moreover, other lncRNAs such as H19, lncRNA for enhancing osteogenesis 3, rhabdomyosarcoma 2-associated transcript, urothelial cancer associated 1, taurine up-regulated gene 1, and nuclear enriched abundant transcript 1 contribute to the complex regulatory network governing osteoblast activities. Understanding the precise roles of these lncRNAs offers promising avenues for developing innovative therapeutic strategies targeting bone-related disorders like osteoporosis. Overall, this review summarizes the pivotal role of lncRNAs in bone formation, highlighting their potential as targets for future research endeavors aimed at advancing therapeutic interventions in bone diseases.
Collapse
Affiliation(s)
- Chun Jiang
- Department of Orthopedics, The People’s Hospital of SND, Suzhou, Jiangsu, 215129, China
| | - Peng Wang
- Department of Spine Surgery, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - ZhenWei Tan
- Department of Orthopedics, Sichuan Fifth People’s Hospital, Chengdu, Sichuan, 610015, China
| | - Yin Zhang
- Department of Orthopedics, The People’s Hospital of SND, Suzhou, Jiangsu, 215129, China
| |
Collapse
|
4
|
Gu N, Wang Y, Li L, Sui X, Liu Z. The mechanism of lncRNA MALAT1 targeting the miR-124-3p/IGF2BP1 axis to regulate osteogenic differentiation of periodontal ligament stem cells. Clin Oral Investig 2024; 28:219. [PMID: 38492123 DOI: 10.1007/s00784-024-05616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES This study aimed to investigate the regulatory roles of lncRNA MALAT1, miR-124-3p, and IGF2BP1 in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS We characterized PDLSCs by employing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses to evaluate the expression of key osteogenic markers including ALPL, SPP1, and RUNX2. Manipulation of lncRNA MALAT1 and miR-124-3p expression levels was achieved through transfection techniques. In addition, early osteogenic differentiation was assessed via Alkaline phosphatase (ALP) staining, and mineral deposition was quantified using Alizarin Red S (ARS) staining. Cellular localization of lncRNA MALAT1 was determined through Fluorescence In Situ Hybridization (FISH). To elucidate the intricate regulatory network, we conducted dual-luciferase reporter assays to decipher the binding interactions between lncRNA MALAT1 and miR-124-3P as well as between miR-124-3P and IGF2BP1. RESULTS Overexpression of lncRNA MALAT1 robustly promoted osteogenesis in PDLSCs, while its knockdown significantly inhibited the process. We confirmed the direct interaction between miR-124-3p and lncRNA MALAT1, underscoring its role in impeding osteogenic differentiation. Notably, IGF2BP1 was identified as a direct binding partner of lncRNA MALAT1, highlighting its pivotal role within this intricate network. Moreover, we determined the optimal IGF2BP1 concentration (50 ng/ml) as a potent enhancer of osteogenesis, effectively countering the inhibition induced by si-MALAT1. Furthermore, in vivo experiments utilizing rat calvarial defects provided compelling evidence, solidifying lncRNA MALAT1's crucial role in bone formation. CONCLUSIONS Our study reveals the regulatory network involving lncRNA MALAT1, miR-124-3p, and IGF2BP1 in PDLSCs' osteogenic differentiation. CLINICAL RELEVANCE These findings enhance our understanding of lncRNA-mediated osteogenesis, offering potential therapeutic implications for periodontal tissue regeneration and the treatment of bone defects.
Collapse
Affiliation(s)
- Nan Gu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Qinghua Road No.1500, Changchun, 130021, People's Republic of China
| | - Yao Wang
- Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lingfeng Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Qinghua Road No.1500, Changchun, 130021, People's Republic of China
| | - Xin Sui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Qinghua Road No.1500, Changchun, 130021, People's Republic of China
| | - Zhihui Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Qinghua Road No.1500, Changchun, 130021, People's Republic of China.
| |
Collapse
|
5
|
Morsczeck C. Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. Int J Mol Sci 2022; 23:ijms23115945. [PMID: 35682637 PMCID: PMC9180518 DOI: 10.3390/ijms23115945] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Human dental follicle cells (DFCs) as periodontal progenitor cells are used for studies and research in regenerative medicine and not only in dentistry. Even if innovative regenerative therapies in medicine are often considered the main research area for dental stem cells, these cells are also very useful in basic research and here, for example, for the elucidation of molecular processes in the differentiation into mineralizing cells. This article summarizes the molecular mechanisms driving osteogenic differentiation of DFCs. The positive feedback loop of bone morphogenetic protein (BMP) 2 and homeobox protein DLX3 and a signaling pathway associated with protein kinase B (AKT) and protein kinase C (PKC) are presented and further insights related to other signaling pathways such as the WNT signaling pathway are explained. Subsequently, some works are presented that have investigated epigenetic modifications and non-coding ncRNAs and their connection with the osteogenic differentiation of DFCs. In addition, studies are presented that have shown the influence of extracellular matrix molecules or fundamental biological processes such as cellular senescence on osteogenic differentiation. The putative role of factors associated with inflammatory processes, such as interleukin 8, in osteogenic differentiation is also briefly discussed. This article summarizes the most important insights into the mechanisms of osteogenic differentiation in DFCs and is intended to be a small help in the direction of new research projects in this area.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|