1
|
Balkrishna A, Mittal R, Bishayee A, Kumar AP, Bishayee A. miRNA signatures affecting the survival outcome in distant metastasis of triple-negative breast cancer. Biochem Pharmacol 2025; 231:116683. [PMID: 39608504 DOI: 10.1016/j.bcp.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Triple-negative breast cancer (TNBC) constitutes for 10-15% of all breast cancer cases. Tumor heterogeneity, high invasiveness, distant metastasis, lack of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 expression contribute to TNBC associated with poor overall survival outcomes amongst diseased individuals. The disparity in clinico-pathological and metastatic patterns to distant sites has substantially enhanced the incidences of tumor recurrence. Survival outcomes amongst metastatic TNBC patients are worse in comparison to non-metastatic TNBC counterparts. MicroRNAs (miRNAs) have emerged as significant drivers to function either as oncogene or tumor suppressors by exerting modulating effects on the expression of target genes in the TNBC tumor microenvironment. The pleiotropic nature of miRNAs expands their preclinical and clinical utility in combating both metastatic and non-metastatic TNBC cases and thereby improves their survival outcomes. The present review article aims to highlight the varying survival outcomes in metastatic and non-metastatic TNBC cases. The present review article emphasizes the therapeutic and prognostic potential of miRNAs in TNBC to improve survival outcomes by retarding distant metastasis to lung, bone, brain, and lymph nodes.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249 405, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249 405, India.
| | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
2
|
Feng T, Xu X, Wang X, Tang W, Lu Y. PGRN protects against serum deprivation-induced cell death by promoting the ROS scavenger system in cervical cancer. Cell Death Dis 2024; 15:889. [PMID: 39695087 DOI: 10.1038/s41419-024-07233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024]
Abstract
Progranulin (PGRN), an autocrine growth factor with tumorigenic roles in a variety of tumors, is a putative survival factor for normal and cancer cells in vitro. However, the fundamental mechanism of PGRN-mediated survival of cancer cells suffering from various types of microenvironmental stresses, such as serum deprivation, remains unknown. We show here that serum deprivation decreases intracellular PGRN protein levels in cervical cancer cells. PGRN protects cervical cancer cells against serum deprivation-induced apoptosis, limits reactive oxygen species (ROS) levels, maintains mitochondria integrity, and reduces oxidative damage of protein, lipid and DNA. PGRN enhances the ROS scavenger system, as evidenced by increased superoxide dismutase (SOD), catalase protein expression and activity, elevated GSH and NADPH levels and increased phase II detoxification enzyme expression in cervical cancer cells after serum withdrawal. The role of PGRN in ROS clearance is mediated by the PGRN-stimulated nuclear factor erythroid-derived 2-like 2 (NFE2L2)-antioxidant response element (ARE) pathway. Our study reveals an antioxidant role of PGRN in supporting the survival of cervical cancer cells under oxidative stress. This insight provides a new perspective on the how cervical cancer cells adapt to microenvironmental stress, contributing to cell viability and other malignant characteristics.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoying Xu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Xiao Wang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yi Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Li SY, Zhang N, Zhang H, Wang N, Du YY, Li HN, Huang CS, Li XR. Deciphering the TCF19/miR-199a-5p/SP1/LOXL2 pathway: Implications for breast cancer metastasis and epithelial-mesenchymal transition. Cancer Lett 2024; 597:216995. [PMID: 38851313 DOI: 10.1016/j.canlet.2024.216995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
Globally, breast cancer (BC) is the predominant malignancy with a significant death rate due to metastasis. The epithelial-mesenchymal transition (EMT) is a fundamental initiator for metastatic progression. Through advanced computational strategies, TCF19 was identified as a critical EMT-associated gene with diagnostic and prognostic significance in BC, based on a novel EMT score. Molecular details and the pro-EMT impact of the TCF19/miR-199a-5p/SP1/LOXL2 axis were explored in BC cell lines through in vitro validations, and the oncogenic and metastatic potential of TCF19 and LOXL2 were investigated using subcutaneous and tail-vein models. Additionally, BC-specific enrichment of TCF19 and LOXL2 was measured using a distribution landscape driven by diverse genomic analysis techniques. Molecular pathways revealed that TCF19-induced LOXL2 amplification facilitated migratory, invasive, and EMT activities of BC cells in vitro, and promoted the growth and metastatic establishment of xenografts in vivo. TCF19 decreases the expression of miR-199a-5p and alters the nuclear dynamics of SP1, modulating SP1's affinity for the LOXL2 promoter, leading to increased LOXL2 expression and more malignant characteristics in BC cells. These findings unveil a novel EMT-inducing pathway, the TCF19/miR-199a-5P/SP1/LOXL2 axis, highlighting the pivotal role of TCF19 and suggesting potential for novel therapeutic approaches for more focused BC interventions.
Collapse
Affiliation(s)
- Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Ning Wang
- Huzhou Central Hospital, Affiliated Hospital of Zhejiang University, Huzhou, PR China
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chen-Shen Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, PR China.
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
4
|
Laham AJ, El-Awady R, Saber-Ayad M, Wang N, Yan G, Boudreault J, Ali S, Lebrun JJ. Targeting the DYRK1A kinase prevents cancer progression and metastasis and promotes cancer cells response to G1/S targeting chemotherapy drugs. NPJ Precis Oncol 2024; 8:128. [PMID: 38839871 PMCID: PMC11153725 DOI: 10.1038/s41698-024-00614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Metastatic cancer remains incurable as patients eventually loose sensitivity to targeted therapies and chemotherapies, further leading to poor clinical outcome. Thus, there is a clear medical gap and urgent need to develop efficient and improved targeted therapies for cancer patients. In this study, we investigated the role of DYRK1A kinase in regulating cancer progression and evaluated the therapeutic potential of DYRK1A inhibition in invasive solid tumors, including colon and triple-negative breast cancers. We uncovered new roles played by the DYRK1A kinase. We found that blocking DYRK1A gene expression or pharmacological inhibition of its kinase activity via harmine efficiently blocked primary tumor formation and the metastatic tumor spread in preclinical models of breast and colon cancers. Further assessing the underlying molecular mechanisms, we found that DYRK1A inhibition resulted in increased expression of the G1/S cell cycle regulators while decreasing expression of the G2/M regulators. Combined, these effects release cancer cells from quiescence, leading to their accumulation in G1/S and further delaying/preventing their progression toward G2/M, ultimately leading to growth arrest and tumor growth inhibition. Furthermore, we show that accumulation of cancer cells in G1/S upon DYRK1A inhibition led to significant potentiation of G1/S targeting chemotherapy drug responses in vitro and in vivo. This study underscores the potential for developing novel DYRK1A-targeting therapies in colon and breast cancers and, at the same time, further defines DYRK1A pharmacological inhibition as a viable and powerful combinatorial treatment approach for improving G1/S targeting chemotherapy drugs treatments in solid tumors.
Collapse
Affiliation(s)
- Amina Jamal Laham
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, Quebec, H4A 3J1, Canada
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ni Wang
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, Quebec, H4A 3J1, Canada
| | - Gang Yan
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, Quebec, H4A 3J1, Canada
| | - Julien Boudreault
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, Quebec, H4A 3J1, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, Quebec, H4A 3J1, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Center, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
5
|
Gong S, Wang Q, Huang J, Huang R, Chen S, Cheng X, Liu L, Dai X, Zhong Y, Fan C, Liao Z. LC-MS/MS platform-based serum untargeted screening reveals the diagnostic biomarker panel and molecular mechanism of breast cancer. Methods 2024; 222:100-111. [PMID: 38228196 DOI: 10.1016/j.ymeth.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Breast cancer (BC), the most common form of malignant cancer affecting women worldwide, was characterized by heterogeneous metabolic disorder and lack of effective biomarkers for diagnosis. The purpose of this study is to search for reliable metabolite biomarkers of BC as well as triple-negative breast cancer (TNBC) using serum metabolomics approach. METHODS In this study, an untargeted metabolomics technique based on ultra-high performance liquid chromatography combined with mass spectrometry (UHPLC-MS) was utilized to investigate the differences in serum metabolic profile between the BC group (n = 53) and non-BC group (n = 57), as well as between TNBC patients (n = 23) and non-TNBC subjects (n = 30). The multivariate data analysis, determination of the fold change and the Mann-Whitney U test were used to screen out the differential metabolites. Additionally, machine learning methods including receiver operating curve analysis and logistic regression analysis were conducted to establish diagnostic biomarker panels. RESULTS There were 36 metabolites found to be significantly different between BC and non-BC groups, and 12 metabolites discovered to be significantly different between TNBC and non-TNBC patients. Results also showed that four metabolites, including N-acetyl-D-tryptophan, 2-arachidonoylglycerol, pipecolic acid and oxoglutaric acid, were considered as vital biomarkers for the diagnosis of BC and non-BC with an area under the curve (AUC) of 0.995. Another two-metabolite panel of N-acetyl-D-tryptophan and 2-arachidonoylglycerol was discovered to discriminate TNBC from non-TNBC and produced an AUC of 0.965. CONCLUSION This study demonstrated that serum metabolomics can be used to identify BC specifically and identified promising serum metabolic markers for TNBC diagnosis.
Collapse
Affiliation(s)
- Sisi Gong
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Qingshui Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Jiewei Huang
- The Graduate School of Fujian Medical University, Fuzhou, PR China
| | - Rongfu Huang
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Shanshan Chen
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Xiaojuan Cheng
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Lei Liu
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Xiaofang Dai
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Yameng Zhong
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Chunmei Fan
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China.
| | - Zhijun Liao
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
6
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
Affiliation(s)
- María de los Ángeles Gastélum-López
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Cristina García Mata
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Jorge López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Av. Escorza No. 900, Centro, Chihuahua 31125, Chihuahua, Mexico;
| | - Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - César López-Camarillo
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico;
| | - Carlos Pérez-Plascencia
- National Cancer Institute, Av. San Fernando 22, Belisario Domínguez Sec. 16, Tlalpan, Mexico City 14080, Mexico;
- FES Iztacala, National Autonomous University of Mexico, Av. de los Barrios S/N, Los Reyes Ixtacala, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Adriana S Beltrán
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| |
Collapse
|
7
|
Rezaei Z, Dastjerdi K, Allahyari A, ShahidSales S, Talebian S, Maharati A, Zangooie A, Zangouei AS, Sadri F, Sargazi S. Plasma microRNA-195, -34c, and - 1246 as novel biomarkers for the diagnosis of trastuzumab-resistant HER2-positive breast cancer patients. Toxicol Appl Pharmacol 2023; 475:116652. [PMID: 37557922 DOI: 10.1016/j.taap.2023.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Recently, miRNAs have been regarded as potential candidates for mediating therapeutic functions by targeting genes related to drug response. In this study, we suggested that plasma miRNAs may be correlated with response to trastuzumab in HER2-positive breast cancer patients. To determine whether miR-195, miR-23b-3p, miR-1246, and miR-34c-3p are involved in trastuzumab resistance, we screened their expressions in the BT-474 cell line, which was followed by plasma analysis from 20 trastuzumab-resistant HER2-positive breast cancer patients and 20 nonresistance subjects. Then, TargetScan, Pictar, and miRDB were applied to find the possible targets of the selected miRNAs. In addition, the expression status of admitted targets was evaluated. Our results showed that in resistant BT-474 cells, miR-1246, and miR-23b-3p were significantly upregulated, and miR-195-5p and miR-34c-3p were downregulated. In plasma analysis, we found miR-195-5p, miR-34c-3p, and miR-1246 meaningfully diminished in the resistant group, while the expression of miR-23b-3p was not statistically different. The expression levels of confirmed targets by qRT-PCR showed that the expression of RAF1, AKT3, c-MET, CCND1, PHLPP2, MYB, MAP2K1, and PTEN was significantly upregulated, while the expression of CCNG2 was significantly downregulated. The networks of miRNAs with their confirmed targets improved comprehension of miRNA-mediated therapeutic responses to trastuzumab and might be proposed for more characterization of miRNA functions. Moreover, these data indicated that miR-195-5p, miR-34c-3p, and miR-1246 could be possible biomarkers for prognosis and early detection of the trastuzumab-resistant group from the sensitive group of HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran
| | - Kazem Dastjerdi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran.
| | - Abolghasem Allahyari
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sahar Talebian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran; Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Sadri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran; Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
Okumura T, Fujii T, Terabayashi K, Kojima T, Takeda S, Kashiwada T, Toriyama K, Hijioka S, Miyazaki T, Yamamoto M, Tanabe S, Shirakawa Y, Furukawa M, Honma Y, Hoshino I, Nabeya Y, Yamaguchi H, Uemoto S, Shimada Y, Matsubara H, Ozawa S, Makuuchi H, Imamura M. MicroRNAs associated with postoperative outcomes in patients with limited stage neuroendocrine carcinoma of the esophagus. Oncol Lett 2023; 26:276. [PMID: 37274462 PMCID: PMC10236049 DOI: 10.3892/ol.2023.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Esophageal neuroendocrine carcinoma (E-NEC) is an aggressive disease with a poor prognosis. The present study aimed to assess the role of surgery in the treatment of patients with resectable E-NEC, and identify a microRNA (miRNA/miR) signature in association with positive postoperative outcomes. Between February 2017 and August 2019, 36 patients with E-NEC who underwent curative surgery at the Japan Neuroendocrine Tumor Society partner hospitals were enrolled in the study. A total of 16 (44.4%) patients achieved disease-free survival (non-relapse group), whereas 20 (55.6%) patients developed tumor relapse (relapse group) during the median follow-up time of 36.5 months (range, 1-242) after surgery with a 5-year overall survival rate of 100 and 10.8%, respectively (P<0.01). No clinicopathological parameters, such as histological type or TNM staging, were associated with tumor relapse. Microarray analysis of 2,630 miRNAs in 11 patients with sufficient quality RNA revealed 12 miRNAs (miR-1260a, -1260b, -1246, -4284, -612, -1249-3p, -296-5p, -575, -6805-3p, -12136, -6822-5p and -4454) that were differentially expressed between the relapse (n=6) and non-relapse (n=5) groups. Furthermore, the top three miRNAs (miR-1246, -1260a and -1260b) were associated with overall survival (P<0.01). These results demonstrated that surgery-based multidisciplinary treatment is effective in a distinct subpopulation of limited stage E-NEC. A specific miRNA gene set is suggested to be associated with treatment outcome.
Collapse
Affiliation(s)
- Tomoyuki Okumura
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Kenji Terabayashi
- Department of Mechanical and Intellectual Systems Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Tomomi Kashiwada
- Department of Medical Oncology, Division Hematology, Respiratory Medical and Oncology, Saga University, Saga 849-8501, Japan
| | - Kazuhiro Toriyama
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Aichi 464-8681, Japan
| | - Susumu Hijioka
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Aichi 464-8681, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Miho Yamamoto
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Shunsuke Tanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masayuki Furukawa
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | - Yoshitaka Honma
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Isamu Hoshino
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Yoshihiro Nabeya
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Shinji Uemoto
- President's Office, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Soji Ozawa
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hiroyasu Makuuchi
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masayuki Imamura
- Neuroendocrine Tumor Center, Kansai Electric Power Hospital, Osaka 553-0003, Japan
| |
Collapse
|