1
|
Wittkopp F, Welsh J, Todd R, Staby A, Roush D, Lyall J, Karkov S, Hunt S, Griesbach J, Bertran MO, Babi D. Current state of implementation of in silico tools in the biopharmaceutical industry-Proceedings of the 5th modeling workshop. Biotechnol Bioeng 2024; 121:2952-2973. [PMID: 38853778 DOI: 10.1002/bit.28768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
The fifth modeling workshop (5MW) was held in June 2023 at Favrholm, Denmark and sponsored by Recovery of Biological Products Conference Series. The goal of the workshop was to assemble modeling practitioners to review and discuss the current state, progress since the last fourth mini modeling workshop (4MMW), gaps and opportunities for development, deployment and maintenance of models in bioprocess applications. Areas of focus were four categories: biophysics and molecular modeling, mechanistic modeling, computational fluid dynamics (CFD) and plant modeling. Highlights of the workshop included significant advancements in biophysical/molecular modeling to novel protein constructs, mechanistic models for filtration and initial forays into modeling of multiphase systems using CFD for a bioreactor and mapped strategically to cell line selection/facility fit. A significant impediment to more fully quantitative and calibrated models for biophysics is the lack of large, anonymized datasets. A potential solution would be the use of specific descriptors in a database that would allow for detailed analyzes without sharing proprietary information. Another gap identified was the lack of a consistent framework for use of models that are included or support a regulatory filing beyond the high-level guidance in ICH Q8-Q11. One perspective is that modeling can be viewed as a component or precursor of machine learning (ML) and artificial intelligence (AI). Another outcome was alignment on a key definition for "mechanistic modeling." Feedback from participants was that there was progression in all of the fields of modeling within scope of the conference. Some areas (e.g., biophysics and molecular modeling) have opportunities for significant research investment to realize full impact. However, the need for ongoing research and development for all model types does not preclude the application to support process development, manufacturing and use in regulatory filings. Analogous to ML and AI, given the current state of the four modeling types, a prospective investment in educating inter-disciplinary subject matter experts (e.g., data science, chromatography) is essential to advancing the modeling community.
Collapse
Affiliation(s)
- Felix Wittkopp
- Roche Diagnostics GmbH, Gene Therapy Technical Development, Penzberg, Germany
| | - John Welsh
- Rivanna Bioprocess Solutions, Charlottesville, Virginia, USA
| | - Robert Todd
- Digital Process Design, Boulder, Colorado, USA
| | - Arne Staby
- CMC Development, Novo Nordisk, Bagsværd, Denmark
| | - David Roush
- Roush Biopharma Panacea, Colts Neck, New Jersey, USA
| | - Jessica Lyall
- Purification Development, Genentech, South San Francisco, California, USA
| | - Sophie Karkov
- Purification Research, Global Research Technologies, Novo Nordisk, Måløv, Denmark
| | - Stephen Hunt
- Allogene Therapeutics, Inc., South San Francisco, California, USA
| | | | - Maria-Ona Bertran
- Product Supply API Manufacturing Development, Novo Nordisk, Bagsværd, Denmark
| | - Deenesh Babi
- Product Supply API Manufacturing Development, Novo Nordisk, Bagsværd, Denmark
| |
Collapse
|
2
|
Yuan X, Wu Z, Guo J, Luo D, Li T, Cao Q, Ren X, Fang H, Xu D, Cao Y. Natural Wood-Derived Macroporous Cellulose for Highly Efficient and Ultrafast Elimination of Double-Stranded RNA from In Vitro-Transcribed mRNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303321. [PMID: 37540501 DOI: 10.1002/adma.202303321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Double-stranded RNA (dsRNA) is a major impurity that can induce innate immune responses and cause adverse drug reactions. Removing dsRNA is an essential and non-trivial process in manufacturing mRNA. Current methods for dsRNA elimination use either high-performance liquid chromatography or microcrystalline cellulose, rendering the process complex, expensive, toxic, and/or time-consuming. This study introduces a highly efficient and ultrafast method for dsRNA elimination using natural wood-derived macroporous cellulose (WMC). With a naturally formed large total pore area and low tortuosity, WMC removes up to 98% dsRNA within 5 min. This significantly shortens the time for mRNA purification and improves purification efficiency. WMC can also be filled into chromatographic columns of different sizes and integrates with fast-protein liquid chromatography for large-scale mRNA purification to meet the requirements of mRNA manufacture. This study further shows that WMC purification improves the enhanced green fluorescent protein mRNA expression efficiency by over 28% and significantly reduces cytokine secretion and innate immune responses in the cells. Successfully applying WMC provides an ultrafast and efficient platform for mRNA purification, enabling large-scale production with significant cost reduction.
Collapse
Affiliation(s)
- Xiushuang Yuan
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular, Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Dengwang Luo
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tianyao Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghao Cao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangyu Ren
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Han Fang
- Bisheng Biotech Company, Beijing, 100083, China
| | - Dawei Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhong Cao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Ferreira PL, Marie H, Berger T, Edelmann B, Rammo O, Sousa F. Evaluation of novel chromatographic prototypes for supercoiled plasmid DNA polishing. Front Bioeng Biotechnol 2024; 11:1296444. [PMID: 38249801 PMCID: PMC10797707 DOI: 10.3389/fbioe.2023.1296444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Since the world first approved gene therapeutics, nucleic acid-based therapies have gained prominence. Several strategies for DNA-based therapy have been approved, and numerous clinical trials for plasmid DNA (pDNA)-based vaccines are currently in development. Due to the rising interest in pDNA for vaccination and gene therapy, plasmid manufacturing must become more effective. One of the most critical steps is downstream processing, involving isolation and purification procedures. To comply with the regulatory guidelines, pDNA must be available as a highly purified, homogeneous preparation of supercoiled pDNA (sc pDNA). This process undertakes several challenges, primarily due to the diversity of molecules derived from the producer organism. In this study, different resins were tested for the adsorption and selective polishing of sc pDNA. To identify optimal pDNA adsorption conditions, batch and column assays were performed with different resins while promoting electrostatic and hydrophobic interactions. The effect of ionic strength, pH, and contact time were evaluated and optimized. Additionally, static and dynamic binding capacities were determined for the selected resins. Analytical chromatography and agarose gel electrophoresis were used to assess the selectivity of the most promising resins toward sc pDNA isoform. Also, genomic DNA, endotoxins, and proteins were quantified to characterize the final sc pDNA quality. At the same time, the recovery and purity yields were evaluated by quantification of sc pDNA after the purification procedure. Overall, the results of the chromatographic assays using agmatine- and arginine-based resins have shown promising potential for sc pDNA polishing. Both resins demonstrated excellent binding capacity for pDNA, with agmatine outperforming arginine-based resin in terms of capacity. However, arginine-based resin exhibited a superior pDNA recovery yield, reaching a notable 52.2% recovery compared to 10.09% from agmatine. Furthermore, both resins exhibited high relative purity levels above 90% for the sc pDNA. The comprehensive characterization of the recovered sc pDNA also revealed a significant reduction in gDNA levels, reinforcing the potential of these prototypes for obtaining high-quality and pure sc pDNA. These findings highlight the promising applications of both resins in scalable pDNA purification processes for gene therapy and biopharmaceutical applications.
Collapse
Affiliation(s)
- Pedro L. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Tim Berger
- Merck Life Science KGaA, Darmstadt, Germany
| | | | | | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Heinrich T, Toepfer S, Steinmetzer K, Ruettger M, Walz I, Kanitz L, Lemuth O, Hubold S, Fritsch F, Loncarevic-Barcena I, Klingner S, Bocker HT, Ermantraut E. DNA-Binding Magnetic Nanoreactor Beads for Digital PCR Analysis. Anal Chem 2023; 95:14175-14183. [PMID: 37646599 PMCID: PMC10534990 DOI: 10.1021/acs.analchem.3c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Digital PCR (dPCR) is based on the separation of target amplification reactions into many compartments with randomly distributed template molecules. Here, we present a novel digital PCR format based on DNA binding magnetic nanoreactor beads (mNRBs). Our approach relies on the binding of all nucleic acids present in a sample to the mNRBs, which both provide a high-capacity binding matrix for capturing nucleic acids from a sample and define the space available for PCR amplification by the internal volume of their hydrogel core. Unlike conventional dPCR, this approach does not require a precise determination of the volume of the compartments used but only their number to calculate the number of amplified targets. We present a procedure in which genomic DNA is bound, the nanoreactors are loaded with PCR reagents in an aqueous medium, and amplification and detection are performed in the space provided by the nanoreactor suspended in fluorocarbon oil. mNRBs exhibit a high DNA binding capacity of 1.1 ng DNA/mNRB (95% CI 1.0-1.2) and fast binding kinetics with ka = 0.21 s-1 (95% CI 0.20-0.23). The dissociation constant KD was determined to be 0.0011 μg/μL (95% CI 0.0007-0.0015). A simple disposable chamber plate is used to accommodate the nanoreactor beads in a monolayer formation for rapid thermocycling and fluorescence detection. The performance of the new method was compared with conventional digital droplet PCR and found to be equivalent in terms of the precision and linearity of quantification. In addition, we demonstrated that mNRBs provide quantitative capture and loss-free analysis of nucleic acids contained in samples in different volumes.
Collapse
Affiliation(s)
| | | | | | | | - Ines Walz
- BLINK AG, Bruesseler Strasse 20, 07747 Jena, Germany
| | - Lea Kanitz
- BLINK AG, Bruesseler Strasse 20, 07747 Jena, Germany
| | - Oliver Lemuth
- BLINK AG, Bruesseler Strasse 20, 07747 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|