1
|
Wang J, Tai J, Zhang W, He K, Lan H, Liu H. Comparison of seven complete mitochondrial genomes from Lamprologus and Neolamprologus (Chordata, Teleostei, Perciformes) and the phylogenetic implications for Cichlidae. Zookeys 2023; 1184:115-132. [PMID: 38314327 PMCID: PMC10838552 DOI: 10.3897/zookeys.1184.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/27/2023] [Indexed: 02/06/2024] Open
Abstract
In this study, mitochondrial genomes (mitogenomes) of seven cichlid species (Lamprologuskungweensis, L.meleagris, L.ornatipinnis, Neolamprologusbrevis, N.caudopunctatus, N.leleupi, and N.similis) are characterized for the first time. The newly sequenced mitogenomes contained 37 typical genes [13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs) and 22 transfer RNA genes (tRNAs)]. The mitogenomes were 16,562 ~ 16,587 bp in length with an A + T composition of 52.1~58.8%. The cichlid mitogenomes had a comparable nucleotide composition, A + T content was higher than the G + C content. The AT-skews of most mitogenomes were inconspicuously positive and the GC-skews were negative, indicating higher occurrences of C than G. Most PCGs started with the conventional start codon, ATN. There was no essential difference in the codon usage patterns of these seven species. Using Ka/Ks, we found the fastest-evolving gene were atp8. But the results of p-distance indicated that the fastest-evolving gene was nad6. Phylogenetic analysis revealed that L.meleagris did not cluster with Lamprologus species, but with species from the genus Neolamprologus. The novel information obtained about these mitogenomes will contribute to elucidating the complex relationships among cichlid species.
Collapse
Affiliation(s)
- Jiachen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Jingzhe Tai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Wenwen Zhang
- Institute of Environmental Sciences, Ministry of Ecology and Environment of China State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains Research Center for Biodiversity Conservation and Biosafety, Nanjing 210042, ChinaInstitute of Environmental Sciences, Ministry of Ecology and Environment of China State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains Research Center for Biodiversity Conservation and BiosafetyNanjingChina
| | - Ke He
- Zhejiang Agriculture and Forestry University, Hangzhou 311300, ChinaZhejiang Agriculture and Forestry UniversityHangzhouChina
| | - Hong Lan
- Zhejiang Open University, Hangzhou 310012, ChinaZhejiang Open UniversityHangzhouChina
| | - Hongyi Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
2
|
Kundu S, De Alwis PS, Kim AR, Lee SR, Kang HE, Go Y, Gietbong FZ, Wibowo A, Kim HW. Mitogenomic Characterization of Cameroonian Endemic Coptodon camerunensis (Cichliformes: Cichlidae) and Matrilineal Phylogeny of Old-World Cichlids. Genes (Basel) 2023; 14:1591. [PMID: 37628642 PMCID: PMC10454717 DOI: 10.3390/genes14081591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The mitogenomic evolution of old-world cichlids is still largely incomplete in Western Africa. In this present study, the complete mitogenome of the Cameroon endemic cichlid, Coptodon camerunensis, was determined by next-generation sequencing. The mitogenome was 16,557 bp long and encoded with 37 genes (13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region). The C. camerunensis mitogenome is AT-biased (52.63%), as exhibited in its congener, Coptodon zillii (52.76% and 53.04%). The majority of PCGs start with an ATG initiation codon, except COI, which starts with a GTG codon and five PCGs and ends with the TAA termination codon and except seven PCGs with an incomplete termination codon. In C. camerunensis mitogenome, most tRNAs showed classical cloverleaf secondary structures, except tRNA-serine with a lack of DHU stem. Comparative analyses of the conserved blocks of two Coptodonini species control regions revealed that the CSB-II block was longer than other blocks and contained highly variable sites. Using 13 concatenated PCGs, the mitogenome-based Bayesian phylogeny easily distinguished all the examined old-world cichlids. Except for Oreochromini and Coptodinini tribe members, the majority of the taxa exhibited monophyletic clustering within their respective lineages. C. camerunensis clustered closely with Heterotilapia buttikoferi (tribe Heterotilapiini) and had paraphyletic clustering with its congener, C. zillii. The Oreochromini species also displayed paraphyletic grouping, and the genus Oreochromis showed a close relationship with Coptodinini and Heterotilapiini species. In addition, illustrating the known distribution patterns of old-world cichlids, the present study is congruent with the previous hypothesis and proclaims that prehistoric geological evolution plays a key role in the hydroclimate of the African continent during Mesozoic, which simultaneously disperses and/or colonizes cichlids in different ichthyological provinces and Rift Lake systems in Africa. The present study suggests that further mitogenomes of cichlid species are required, especially from western Africa, to understand their unique evolution and adaptation.
Collapse
Affiliation(s)
- Shantanu Kundu
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Piyumi S. De Alwis
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Ah Ran Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Soo Rin Lee
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Yunji Go
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | | | - Arif Wibowo
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia;
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| |
Collapse
|