1
|
Sabry AH, I. Dallal Bashi O, Nik Ali N, Mahmood Al Kubaisi Y. Lung disease recognition methods using audio-based analysis with machine learning. Heliyon 2024; 10:e26218. [PMID: 38420389 PMCID: PMC10900411 DOI: 10.1016/j.heliyon.2024.e26218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
The use of computer-based automated approaches and improvements in lung sound recording techniques have made lung sound-based diagnostics even better and devoid of subjectivity errors. Using a computer to evaluate lung sound features more thoroughly with the use of analyzing changes in lung sound behavior, recording measurements, suppressing the presence of noise contaminations, and graphical representations are all made possible by computer-based lung sound analysis. This paper starts with a discussion of the need for this research area, providing an overview of the field and the motivations behind it. Following that, it details the survey methodology used in this work. It presents a discussion on the elements of sound-based lung disease classification using machine learning algorithms. This includes commonly prior considered datasets, feature extraction techniques, pre-processing methods, artifact removal methods, lung-heart sound separation, deep learning algorithms, and wavelet transform of lung audio signals. The study introduces studies that review lung screening including a summary table of these references and discusses the literature gaps in the existing studies. It is concluded that the use of sound-based machine learning in the classification of respiratory diseases has promising results. While we believe this material will prove valuable to physicians and researchers exploring sound-signal-based machine learning, large-scale investigations remain essential to solidify the findings and foster wider adoption within the medical community.
Collapse
Affiliation(s)
- Ahmad H. Sabry
- Department of Medical Instrumentation Engineering Techniques, Shatt Al-Arab University College, Basra, Iraq
| | - Omar I. Dallal Bashi
- Medical Technical Institute, Northern Technical University, 95G2+P34, Mosul, 41002, Iraq
| | - N.H. Nik Ali
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Yasir Mahmood Al Kubaisi
- Department of Sustainability Management, Dubai Academic Health Corporation, Dubai, 4545, United Arab Emirates
| |
Collapse
|
2
|
Kim H, Koh D, Jung Y, Han H, Kim J, Joo Y. Breathing sounds analysis system for early detection of airway problems in patients with a tracheostomy tube. Sci Rep 2023; 13:21029. [PMID: 38030682 PMCID: PMC10687247 DOI: 10.1038/s41598-023-47904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
To prevent immediate mortality in patients with a tracheostomy tube, it is essential to ensure timely suctioning or replacement of the tube. Breathing sounds at the entrance of tracheostomy tubes were recorded with a microphone and analyzed using a spectrogram to detect airway problems. The sounds were classified into three categories based on the waveform of the spectrogram according to the obstacle status: normal breathing sounds (NS), vibrant breathing sounds (VS) caused by movable obstacles, and sharp breathing sounds (SS) caused by fixed obstacles. A total of 3950 breathing sounds from 23 patients were analyzed. Despite neither the patients nor the medical staff recognizing any airway problems, the number and percentage of NS, VS, and SS were 1449 (36.7%), 1313 (33.2%), and 1188 (30.1%), respectively. Artificial intelligence (AI) was utilized to automatically classify breathing sounds. MobileNet and Inception_v3 exhibited the highest sensitivity and specificity scores of 0.9441 and 0.9414, respectively. When classifying into three categories, ResNet_50 showed the highest accuracy of 0.9027, and AlexNet showed the highest accuracy of 0.9660 in abnormal sounds. Classifying breathing sounds into three categories is very useful in deciding whether to suction or change the tracheostomy tubes, and AI can accomplish this with high accuracy.
Collapse
Affiliation(s)
- Hyunbum Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, 2 Sosa-dong, Wonmi-gu, Bucheon, Kyounggi-do, 14647, Republic of Korea
| | - Daeyeon Koh
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Yohan Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Hyunjun Han
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| | - Younghoon Joo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, 2 Sosa-dong, Wonmi-gu, Bucheon, Kyounggi-do, 14647, Republic of Korea.
| |
Collapse
|
3
|
Prabhakar SK, Won DO. HISET: Hybrid interpretable strategies with ensemble techniques for respiratory sound classification. Heliyon 2023; 9:e18466. [PMID: 37554776 PMCID: PMC10404967 DOI: 10.1016/j.heliyon.2023.e18466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The human respiratory systems can be affected by several diseases and it is associated with distinctive sounds. For advanced biomedical signal processing, one of the most complex issues is automated respiratory sound classification. In this research, five Hybrid Interpretable Strategies with Ensemble Techniques (HISET) which are quite interesting and robust are proposed for the purpose of respiratory sounds classification. The first approach is termed as an Ensemble GSSR technique which utilizes L 2 Granger Analysis and the proposed Supportive Ensemble Empirical Mode Decomposition (SEEMD) technique and then Support Vector Machine based Recursive Feature Elimination (SVM-RFE) is used for feature selection and followed by classification with Machine Learning (ML) classifiers. The second approach proposed is the implementation of a novel Realm Revamping Sparse Representation Classification (RR-SRC) technique and third approach proposed is a Distance Metric dependent Variational Mode Decomposition (DM-VMD) with Extreme Learning Machine (ELM) classification process. The fourth approach proposed is with the usage of Harris Hawks Optimization (HHO) with a Scaling Factor based Pliable Differential Evolution (SFPDE) algorithm termed as HHO-SFPDE and it is classified with ML classifiers. The fifth or the final approach proposed analyzes the application of dimensionality reduction techniques with the proposed Gray Wolf Optimization based Support Vector Classification (GWO-SVC) and another parallel approach utilizes a similar kind of analysis with the Grasshopper Optimization Algorithm (GOA) based Sparse Autoencoder. The results are examined for ICBHI dataset and the best results are shown for the 2-class classification when the analysis is carried out with Manhattan distance-based VMD-ELM reporting an accuracy of 95.39%, and for 3-class classification Euclidean distance-based VMD-ELM reported an accuracy of 90.61% and for 4-class classification, Manhattan distance-based VMD-ELM reported an accuracy of 89.27%.
Collapse
Affiliation(s)
- Sunil Kumar Prabhakar
- Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Dong-Ok Won
- Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
4
|
Sfayyih AH, Sabry AH, Jameel SM, Sulaiman N, Raafat SM, Humaidi AJ, Kubaiaisi YMA. Acoustic-Based Deep Learning Architectures for Lung Disease Diagnosis: A Comprehensive Overview. Diagnostics (Basel) 2023; 13:diagnostics13101748. [PMID: 37238233 DOI: 10.3390/diagnostics13101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Lung auscultation has long been used as a valuable medical tool to assess respiratory health and has gotten a lot of attention in recent years, notably following the coronavirus epidemic. Lung auscultation is used to assess a patient's respiratory role. Modern technological progress has guided the growth of computer-based respiratory speech investigation, a valuable tool for detecting lung abnormalities and diseases. Several recent studies have reviewed this important area, but none are specific to lung sound-based analysis with deep-learning architectures from one side and the provided information was not sufficient for a good understanding of these techniques. This paper gives a complete review of prior deep-learning-based architecture lung sound analysis. Deep-learning-based respiratory sound analysis articles are found in different databases including the Plos, ACM Digital Libraries, Elsevier, PubMed, MDPI, Springer, and IEEE. More than 160 publications were extracted and submitted for assessment. This paper discusses different trends in pathology/lung sound, the common features for classifying lung sounds, several considered datasets, classification methods, signal processing techniques, and some statistical information based on previous study findings. Finally, the assessment concludes with a discussion of potential future improvements and recommendations.
Collapse
Affiliation(s)
- Alyaa Hamel Sfayyih
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Ahmad H Sabry
- Department of Computer Engineering, Al-Nahrain University Al Jadriyah Bridge, Baghdad 64074, Iraq
| | | | - Nasri Sulaiman
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Safanah Mudheher Raafat
- Department of Control and Systems Engineering, University of Technology, Baghdad 10011, Iraq
| | - Amjad J Humaidi
- Department of Control and Systems Engineering, University of Technology, Baghdad 10011, Iraq
| | - Yasir Mahmood Al Kubaiaisi
- Department of Sustainability Management, Dubai Academic Health Corporation, Dubai 4545, United Arab Emirates
| |
Collapse
|
5
|
Aerial Separation and Receiver Arrangements on Identifying Lung Syndromes Using the Artificial Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7298903. [PMID: 36052039 PMCID: PMC9427225 DOI: 10.1155/2022/7298903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Lung disease is one of the most harmful diseases in traditional days and is the same nowadays. Early detection is one of the most crucial ways to prevent a human from developing these types of diseases. Many researchers are involved in finding various techniques for predicting the accuracy of the diseases. On the basis of the machine learning algorithm, it was not possible to predict the better accuracy when compared to the deep learning technique; this work has proposed enhanced artificial neural network approaches for the accuracy of lung diseases. Here, the discrete Fourier transform and the Burg auto-regression techniques are used for extracting the computed tomography (CT) scan images, and feature reduction takes place by using principle component analysis (PCA). This proposed work has used the 120 subjective datasets from public landmarks with and without lung diseases. The given dataset is trained by using an enhanced artificial neural network (ANN). The preprocessing techniques are handled by using a Gaussian filter; thus, our proposed approach provides enhanced classification accuracy. Finally, our proposed method is compared with the existing machine learning approach based on its accuracy.
Collapse
|