1
|
Reyes-Haro L, Prince G, Granja-Travez RS, Chandler D. Phenotypic and genotypic characterization of fifty strains of Beauveria spp. (Ascomycota, Cordycipitaceae) fungal entomopathogens from diverse geographic origins against the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). PEST MANAGEMENT SCIENCE 2024; 80:5064-5077. [PMID: 38864555 DOI: 10.1002/ps.8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The diamondback moth (DBM) (Plutella xylostella) causes large losses to global crop production. Conventional insecticides are losing effectiveness due to resistance. Consequently, there is a growing interest in sustainable control methods like entomopathogenic fungi (EPF) in Integrated Pest Management. However, the field efficacy of fungi varies due to environmental influences. In this study, a group of 50 Beauveria strains sourced from different locations were characterized by genotype and phenotype with respect to their conidial production, temperature and UV-B radiation tolerance, and virulence against DBM. RESULTS Phylogenetic analysis revealed two distinct species: Beauveria bassiana (84%) and B. pseudobassiana (16%). Most strains showed optimal growth between 25 °C and 28 °C, with germination severely affected at 10 °C and 33 °C. Notably, 44% displayed high resistance to UV-B radiation (5.94 kJ m-2), with germination rates between 60.9% and 88.1%. Geographical origin showed no correlation with temperature or UV radiation tolerance. In virulence experiments, 52% of strains caused mortality rates exceeding 80% in DBM second instars at 7 days after exposure to a 4 mL conidial suspension (107 conidia/mL). CONCLUSION Survival under environmental conditions is crucial for EPF-based commercial products against DBM. Results suggest strain tolerance to environmental stressors is more tied to specific micro-climatic factors than geographical origin. Each strain exhibited unique characteristics; for example, the most virulent strain (#29) was highly UV-sensitive. Therefore, characterizing diverse strains provides essential genotypic and phenotypic insights, which are fundamental for understanding their role as biocontrol agents while facilitating efficient biopesticide product development and uptake. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Laura Reyes-Haro
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick, UK
| | - Gillian Prince
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick, UK
| | | | - David Chandler
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick, UK
| |
Collapse
|
2
|
da Silva TM, Cividanes FJ, Salles FA, Pacífico Manfrim Perticarrari AL, Zambon da Cunha SB, Monteiro Dos Santos-Cividanes T. Insect pests and natural enemies associated with lettuce Lactuca sativa L. (Asteraceae) in an aquaponics system. Sci Rep 2024; 14:14947. [PMID: 38942758 PMCID: PMC11213887 DOI: 10.1038/s41598-024-63938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
Although food is produced in aquaponics systems worldwide, no information is available on the occurrence of insect pests and natural enemies in aquaponic lettuce, Lactuca sativa L. In this study, a survey was carried out in an aquaponic system combining lettuce with lambari, Astyanax altiparanae (Garutti & Briski), aiming to determine the insect pests and natural enemies associated with this system. We also determined the predominant insect species and the effect of meteorological factors on their populations. Insect abundance was estimated by visual sampling during 13 cultivation cycles, totaling 27 sampling dates. The meteorological factors considered were air temperature and relative humidity, and their effects were determined using the Pearson correlation. The thrips Frankliniella schultzei (Trybom) and Caliothrips phaseoli (Hood) and the aphid Aphis spiraecola (Patch) predominated. Ambient temperature and relative humidity were essential factors affecting C. phaseoli and F. schultzei. The natural enemies found on the lettuce plants were the thrips Franklinothrips vespiformis (Crawford) and Stomatothrips angustipennis (Hood) and the ladybugs Cycloneda sanguinea L., Eriopis connexa (Germar), and Hippodamia convergens (Guérin-Méneville). These results constitute the first step for a lettuce-integrated pest-management program in aquaponics systems.
Collapse
Affiliation(s)
- Tamara Machado da Silva
- Instituto Biológico, Avenida Bandeirantes, 2419, Ribeirão Preto, São Paulo, CEP 14030-600, Brazil
| | | | - Fernando André Salles
- Instituto de Zootecnia, Avenida Bandeirantes, 2419, Ribeirão Preto, São Paulo, CEP 14030-600, Brazil
| | | | - Suzan Beatriz Zambon da Cunha
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, São Carlos, São Paulo, CEP 13565-505, Brazil
| | | |
Collapse
|
3
|
Xing P, Diao H, Wang D, Zhou W, Tian J, Ma R. Identification, Pathogenicity, and Culture Conditions of a New Isolate of Cordyceps javanica (Hypocreales: Cordycipitaceae) From Soil. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:98-107. [PMID: 36534984 DOI: 10.1093/jee/toac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 06/17/2023]
Abstract
This study decribes a highly effective insecticidal isolate of Cordyceps javanica (Frieder. & Bally) (Hypocreales: Cordycipitaceae) named IJ-tg19, which was isolated from soil. Spray bioassays were performed with IJ-tg19 on Myzus persicae (Sulzer) (Hemiptera: Aphididae) adults, third-instar nymphs of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), and third-instar larvae of Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) to determine the pathogenicity of the isolate. The corrected mortality rates for all three pests were 100% when the conidia concentration was 1 × 106 conidia/ml, the lowest concentration in this study, and the median survival times (MST) were 4, 4, and 3 d. The MST shortens with increasing conidia concentration. The effects of laboratory culture conditions on the sporulation and growth of the isolate were also studied. This isolate had the greatest conidia production and fastest growth rate on malt extract agar medium at 25°C. The amount of conidia produced had positive correlation to light duration, with the highest production at 24 hr light. The growth of mycelium can adapt to a moderately alkaline environment, but the optimum conidial production occurred at the pH of 7. Our finding and research will be useful in biocontrol programs that are considering using the new isolate of C. javanica against greenhouse pests.
Collapse
Affiliation(s)
- Peixiang Xing
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Hongliang Diao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Di Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Wenwen Zhou
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Jing Tian
- Department of Life Sciences, Lvliang University, Lvliang, 033001, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| |
Collapse
|
4
|
Wang W, Wang Y, Dong G, Chen F. Development of Cordyceps javanica BE01 with enhanced virulence against Hyphantria cunea using polyethylene glycol-mediated protoplast transformation. Front Microbiol 2022; 13:972425. [PMID: 36118242 PMCID: PMC9478556 DOI: 10.3389/fmicb.2022.972425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cordyceps javanica has promising application prospects as an entomopathogenic fungus with a wide range of hosts. To enhance the virulence of C. javanica, a polyethylene glycol (PEG)-mediated protoplast genetic transformation system was constructed. Strains overexpressing the subtilisin-like protease genes CJPRB and CJPRB1 and the tripeptidyl peptidase gene CJCLN2-1 were constructed with this system, and the effects of these strains on Hyphantria cunea were tested. The aminoglycoside G418 was used at 800 μg ml−1 to screen the transformants. C. javanica hyphae were degraded with an enzyme mixture to obtain protoplasts at 1.31 × 107 protoplasts ml−1. The transformation of 2 μg of DNA into 1,000 protoplasts was achieved with 20% PEG2000, and after 6 h of recovery, the transformation efficiency was 12.33 ± 1.42 transformants μg−1 plasmid. The LT50 values of CJPRB, CJPRB1, and CJCLN2-1-overexpressing C. javanica strains were 1.32-fold, 2.21-fold, and 2.14-fold higher than that of the wild-type (WT) strain, respectively. The three overexpression strains showed no significant differences from the WT strain in terms of colony growth, conidial yield, and conidial germination rate. However, the infection rate of the CJPRB1 strain was faster than that of the WT strain, with infection occurring within 4–5 days. The CJCLN2-1 strain had a significantly higher mortality rate than the WT strain within 4–10 days after infection. A C. javanica genetic transformation system was successfully constructed for the first time, and an overexpression strain exhibited enhanced virulence to H. cunea compared with the WT strain.
Collapse
Affiliation(s)
- Wenxiu Wang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yahong Wang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Guangping Dong
- Key Laboratory of State Forestry Administration on Pine Wilt Disease Prevention and Control, Hefei, China
| | - Fengmao Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- *Correspondence: Fengmao Chen,
| |
Collapse
|
5
|
Entomopathogenic Fungi for Pests and Predators Control in Beekeeping. Vet Sci 2022; 9:vetsci9020095. [PMID: 35202348 PMCID: PMC8875931 DOI: 10.3390/vetsci9020095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023] Open
Abstract
The emergence of resistance to chemical drugs in beekeeping is becoming a phenomenon of widespread concern. One promising alternative to the use of chemicals is entomopathogenic organisms that are environmentally friendly and are capable of stopping the expression of resistance once it has evolved. In the recent past, the scientific community has carried out several experiments addressing the use of microbiological control agents. In particular, experimental studies using entomopathogenic fungi have had more success in honey bee research. With their adherence properties and their ability to digest the cuticle and overcome the host defense mechanism, they could be a suitable ingredient in bioacaricides. Several promising fungi have been identified in the search for effective means to control pest populations. The data obtained from the different experiments are interesting and often favorable to their use, but there are also conflicting results. The aim of this review is to describe the state of the art on the topic under investigation.
Collapse
|
6
|
Agbessenou A, Akutse KS, Yusuf AA, Wekesa SW, Khamis FM. Temperature-dependent modelling and spatial prediction reveal suitable geographical areas for deployment of two Metarhizium anisopliae isolates for Tuta absoluta management. Sci Rep 2021; 11:23346. [PMID: 34857835 PMCID: PMC8639720 DOI: 10.1038/s41598-021-02718-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Tuta absoluta is one of the most devastating pests of Solanaceae crops in Africa. We previously demonstrated the efficacy of Metarhizium anisopliae isolates ICIPE 18, ICIPE 20 and ICIPE 665 against adult T. absoluta. However, adequate strain selection and accurate spatial prediction are fundamental to optimize their efficacy and formulations before field deployment. This study therefore assessed the thermotolerance, conidial yield and virulence (between 15 and 35 °C) of these potent isolates. Over 90% of conidia germinated at 20, 25 and 30 °C while no germination occurred at 15 °C. Growth of the three isolates occurred at all temperatures, but was slower at 15, 33 and 35 °C as compared to 20, 25 and 30 °C. Optimum temperatures for mycelial growth and spore production were 30 and 25 °C, respectively. Furthermore, ICIPE 18 produced higher amount of spores than ICIPE 20 and ICIPE 665. The highest mortality occurred at 30 °C for all the three isolates, while the LT50 values of ICIPE 18 and ICIPE 20 were significantly lower at 25 and 30 °C compared to those of ICIPE 665. Subsequently, several nonlinear equations were fitted to the mortality data to model the virulence of ICIPE 18 and ICIPE 20 against adult T. absoluta using the Entomopathogenic Fungi Application (EPFA) software. Spatial prediction revealed suitable locations for ICIPE 18 and ICIPE 20 deployment against T. absoluta in Kenya, Tanzania and Uganda. Our findings suggest that ICIPE 18 and ICIPE 20 could be considered as effective candidate biopesticides for an improved T. absoluta management based on temperature and location-specific approach.
Collapse
Affiliation(s)
- Ayaovi Agbessenou
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Komivi S Akutse
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.,Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Sospeter W Wekesa
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
7
|
Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases. PLANTS 2020; 9:plants9121746. [PMID: 33321854 PMCID: PMC7763231 DOI: 10.3390/plants9121746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Incorporating beneficial microorganisms in crop production is the most promising strategy for maintaining agricultural productivity and reducing the use of inorganic fertilizers, herbicides, and pesticides. Numerous microorganisms have been described in the literature as biological control agents for pests and diseases, although some have not yet been commercialised due to their lack of viability or efficacy in different crops. Paecilomyces is a cosmopolitan fungus that is mainly known for its nematophagous capacity, but it has also been reported as an insect parasite and biological control agent of several fungi and phytopathogenic bacteria through different mechanisms of action. In addition, species of this genus have recently been described as biostimulants of plant growth and crop yield. This review includes all the information on the genus Paecilomyces as a biological control agent for pests and diseases. Its growth rate and high spore production rate in numerous substrates ensures the production of viable, affordable, and efficient commercial formulations for agricultural use.
Collapse
|
8
|
Wu S, Toews MD, Oliveira-Hofman C, Behle RW, Simmons AM, Shapiro-Ilan DI. Environmental Tolerance of Entomopathogenic Fungi: A New Strain of Cordyceps javanica Isolated from a Whitefly Epizootic Versus Commercial Fungal Strains. INSECTS 2020; 11:insects11100711. [PMID: 33080830 PMCID: PMC7602971 DOI: 10.3390/insects11100711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Simple Summary Whiteflies are significant pests of cotton and vegetables in southeastern USA. In previous studies, we isolated and identified a new strain of entomopathogenic fungus that caused epizootics among whiteflies in cotton fields of Southern Georgia, USA. The objective of this study was to test the level of tolerance of this new strain to environmental conditions as compared to commercial fungal strains. We exposed the new strain and three commercially available strains of biopesticides (BotaniGard, Met52, and PFR-97) to different temperatures and strong ultraviolet (UV) radiation before examining post-treatment viability and virulence against a common model organism for insect pathology, the greater wax moth larvae. We found that the new strain had similar levels of activity to commercial strains at moderate temperatures, but higher tolerance than PFR-97 to extremely low and high temperatures and strong UV intensity. These findings suggest that the new fungal strain has potential for commercial development as an alternative to PFR-97 for managing certain types of insect pests. Abstract A new strain of Cordyceps javanica (wf GA17) was observed causing widespread epizootics among whiteflies in Southern Georgia in 2017. The tolerance of conidia to environmental factors including variable temperature and ultraviolet (UV) light was compared between this strain and three commercial strains of entomopathogenic fungi (Metarhizium brunneum F52, Cordyceps fumosorosea Apopka97, and Beauveria bassiana GHA). Under 10–30 °C, C. javanica wf GA17 responded similarly to other fungi, with the highest virulence against Galleria mellonella at 25 °C, followed by 20, 30, and 15 °C; lowest virulence was observed at 10 °C. At 35 °C and 40 °C, C. javanica wf GA17 had lower tolerance than M. brunneum F52 and B. bassiana GHA, but was superior to C. fumosorosea Apopka97 in conidia viability and post-treatment virulence. After exposure to −20 °C for 56 d, C. javanica wf GA17 exhibited lower germination than M. brunneum F52 and lower virulence than M. brunneum F52 and B. bassiana GHA, but higher germination and virulence than C. fumosorosea Apopka97. Following exposure to strong UV light, viability and virulence of all fungi were reduced with increasing exposure periods. Increased environmental tolerance of C. javanica wf GA17 over C. fumosorosea Apopka97 suggests that the new strain could have applicability for commercial pest management.
Collapse
Affiliation(s)
- Shaohui Wu
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA;
| | - Michael D. Toews
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA;
- Correspondence: (M.D.T.); (D.I.S.-I.)
| | - Camila Oliveira-Hofman
- USDA–ARS, Southeastern Fruit and Tree Nut Research Laboratory, 21 Dunbar Road, Byron, GA 31008, USA;
| | - Robert W. Behle
- USDA–ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA;
| | - Alvin M. Simmons
- USDA–ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA;
| | - David I. Shapiro-Ilan
- USDA–ARS, Southeastern Fruit and Tree Nut Research Laboratory, 21 Dunbar Road, Byron, GA 31008, USA;
- Correspondence: (M.D.T.); (D.I.S.-I.)
| |
Collapse
|
9
|
Prince G, Chandler D. Susceptibility of Myzus persicae, Brevicoryne brassicae and Nasonovia ribisnigri to Fungal Biopesticides in Laboratory and Field Experiments. INSECTS 2020; 11:insects11010055. [PMID: 31963410 PMCID: PMC7022964 DOI: 10.3390/insects11010055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the potential of entomopathogenic fungi (EPF) for the control of aphid pests of field vegetable crops. Four biopesticides based on the EPF Beauveria bassiana (Botanigard ES and Naturalis L), Cordyceps fumosorosea s.l. (Preferal WG), and Akanthomyces dipterigenus (Vertalec) were evaluated in a laboratory bioassay against peach-potato aphid Myzus persicae, cabbage aphid Brevicoryne brassicae, and currant-lettuce aphid Nasonoviaribisnigri. There was significant variation in the spore dose provided by the products, with Botanigard ES producing the highest dose (639 viable spores per mm2). Botanigard ES also caused more mortality than the other products. Combining Vertalec with the vegetable oil-based adjuvant Addit had an additive effect on the mortality of B.brassicae. All fungal products reduced the number of progeny produced by M. persicae but there was no effect with B. brassicae or N. ribisnigri. When aphid nymphs were treated with Botanigard ES and Preferal WG, both products reduced population development, with up to 86% reduction occurring for Botanigard ES against M. persicae. In a field experiment, Botanigard ES sprayed twice, at seven-day intervals, against B. brassicae on cabbage plants, reduced aphid numbers by 73%. In a second field experiment with B. brassicae, M. persicae, and N. ribisnigri, Botanigard ES reduced populations of B. brassicae and N. ribisnigri but there was no significant effect on M. persicae.
Collapse
|
10
|
Onsongo SK, Gichimu BM, Akutse KS, Dubois T, Mohamed SA. Performance of Three Isolates of Metarhizium Anisopliae and Their Virulence against Zeugodacus Cucurbitae under Different Temperature Regimes, with Global Extrapolation of Their Efficiency. INSECTS 2019; 10:E270. [PMID: 31454931 PMCID: PMC6780710 DOI: 10.3390/insects10090270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
The performance of entomopathogenic fungi in pest control is usually affected by both biotic and abiotic factors. This study aimed to determine the effects of various temperatures (15, 20, 25 and 30 °C) on conidial germination, mycelial growth and conidial density and virulence to the melon fly Zeugodacus cucurbitae of three selected isolates of Metarhizium anisopliae. The three isolates, ICIPE 18, ICIPE 30 and ICIPE 69, had previously been selected in laboratory bioassays. Percentage mortality by the three isolates ranged between 16.25% and 100.0% across the different temperatures. The isolates ICIPE 69 and ICIPE 18 recorded the highest percentage mortality of 96.25% and 100% and the shortest LT50 values of 2.61 and 2.63 days, respectively, at 30 °C. However, at 30 °C, ICIPE 69 produced the highest number of conidia of 90.5 × 107 /mL and was therefore selected for global mapping to predict its efficacy against Z. cucurbitae using the geospatial temperature data layer and the best fitted quadratic model. The map showed that the isolate would be more effective in the tropics than in temperate climates.
Collapse
Affiliation(s)
- Susan K Onsongo
- Plant Health Division, International Centre of Insect Physiology and Ecology (icipe), Nairobi 00100, Kenya.
- Department of Agricultural Resource Management, University of Embu, Embu 60100, Kenya.
| | - Bernard M Gichimu
- Department of Agricultural Resource Management, University of Embu, Embu 60100, Kenya
| | - Komivi S Akutse
- Plant Health Division, International Centre of Insect Physiology and Ecology (icipe), Nairobi 00100, Kenya
| | - Thomas Dubois
- Plant Health Division, International Centre of Insect Physiology and Ecology (icipe), Nairobi 00100, Kenya
| | - Samira A Mohamed
- Plant Health Division, International Centre of Insect Physiology and Ecology (icipe), Nairobi 00100, Kenya
| |
Collapse
|
11
|
Genome sequence of Isaria javanica and comparative genome analysis insights into family S53 peptidase evolution in fungal entomopathogens. Appl Microbiol Biotechnol 2019; 103:7111-7128. [PMID: 31273397 DOI: 10.1007/s00253-019-09997-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 12/17/2022]
Abstract
The fungus Isaria javanica is an important entomopathogen that parasitizes various insects and is effective for pest control. In this study, we sequenced and assembled the genomes (IJ1G and IJ2G) of two I. javanica strains isolated from different insects. The genomes were approximately 35 Mb in size with 11,441 and 11,143 protein-coding genes, respectively. Using a phylogenomic approach, we evaluated genome evolution across five entomopathogenic fungi in Cordycipitaceae. By comparative genome analysis, it was found that family S53 serine peptidases were expanded in Cordycipitaceae entomopathogens, particularly in I. javanica. Gene duplication events were identified based on phylogenetic relationships inferred from 82 S53 peptidases within six entomopathogenic fungal genomes. Moreover, we found that carbohydrate-active enzymes and proteinases were the largest secretory protein groups encoded in the I. javanica genome, especially chitinases (GH18), serine and aspartic peptidases (S53, S08, S10, A01). Pathogenesis-related genes and genes for bacterial-like toxins and secondary metabolites were also identified. By comparative transcriptome analysis, differentially expressed genes in response to insect nutrients (in vitro) were identified. Moreover, most S53 peptidases were detected to be significantly upregulated during the initial fungal infection process in insects (in vivo) by RT-qPCR. Our results provide new clues about understanding evolution of pathogenic proteases and may suggest that abundant S53 peptidases in the I. javanica genome may contribute to its effective parasitism on various insects.
Collapse
|
12
|
Mascarin GM, Alves Pereira-Junior R, Fernandes ÉKK, Quintela ED, Dunlap CA, Arthurs SP. Phenotype responses to abiotic stresses, asexual reproduction and virulence among isolates of the entomopathogenic fungus Cordyceps javanica (Hypocreales: Cordycipitaceae). Microbiol Res 2018; 216:12-22. [PMID: 30269851 DOI: 10.1016/j.micres.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022]
Abstract
Selecting entomopathogenic fungal isolates with resilience to environmental stresses, optimal mass production characteristics, and with high virulence to target pests favors the development of mycopesticides. A case in point, Cordyceps (= Isaria) javanica has been extensively investigated for non-chemical control of whiteflies worldwide. We phylogenetically characterized 11 native C. javanica isolates from Northeastern and Central Brazil. These isolates were screened for tolerance to heat-shock, UV-B radiation, osmotic and oxidative stresses, as well as conidial production on cereal grain and insecticidal activity against the whitefly Bemisia tabaci (MEAM 1) in the laboratory. All isolates were pathogenic to whiteflies and significant (3-fold) differences in median lethal concentration were observed among isolates. Furthermore, pronounced differences among isolates were found for stress factors and conidial production. Using principal component analysis, our results highlighted three major clusters formed by isolates (i) resistant to osmotic and oxidative stress, (ii) resilient to UV-B, and (iii) with high virulence, conidial production and heat tolerance. Overall, isolate CG1228 performed best based on multi-stress resistance, mass production and virulence attributes in the laboratory. This study highlights the importance of exploring natural variation in entomopathogenic fungi for selection of appropriate isolates for effective biocontrol of insect pests coupled with mass production characteristics and abiotic stress tolerances.
Collapse
Affiliation(s)
- Gabriel Moura Mascarin
- Embrapa Meio Ambiente, Rodovia SP-340, km 127.5, S/N - Tanquinho Velho, Jaguariúna, SP, 13820-000, Brazil.
| | | | - Éverton Kort Kamp Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Eliane Dias Quintela
- Embrapa Arroz e Feijão, Rodovia GO-462, km 12, Zona Rural, C.P. 179, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | - Christopher A Dunlap
- United States Department of Agriculture, Agriculture Research Service, Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - Steven Paul Arthurs
- Department of Entomology, Texas A&M University, College Station TX, 77843-2475, USA
| |
Collapse
|
13
|
Cabanillas HE, de León JH, Humber RA, Murray KD, Jones WA. Isaria poprawskii sp. nov. (Hypocreales: Cordycipitaceae), a new entomopathogenic fungus from Texas affecting sweet potato whitefly. MYCOSCIENCE 2013. [DOI: 10.1016/j.myc.2012.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Esther CP, Erika AS, Rosa María MC, de la Torre M. Performance of two isolates of Isaria fumosorosea from hot climate zones in solid and submerged cultures and thermotolerance of their propagules. World J Microbiol Biotechnol 2012; 29:309-17. [PMID: 23065378 DOI: 10.1007/s11274-012-1184-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
Isaria fumosorosea frequently causes mycosis of agricultural pests in the hot semiarid and dry tropical regions of Mexico. Because temperature tolerance restricts the use of fungal biopesticides, we investigated two isolates from these areas for possible development into mycoinsecticides for use in hot weather agricultural zones. We studied the effects of culture system (solid or submerged cultures) and temperature on the fungal growth, extracellular enzyme production, pathogenicity, and thermotolerance of the produced propagules. Between 20 and 28 °C, the specific growth rates of the isolate PCC were higher on solid media, but in the submerged culture, the isolate P43A grew faster even at temperatures of up to 34 °C. On solid media, P43A produced 1.5-fold more proteases than PCC, but in the submerged culture, both strains had similar activities. Under the same culture conditions, PCC produced a blastospore:conidia ratio of 1:2, and P43A produced a ratio of 1:5. PCC aerial conidia had the shortest Lethal Time 50 (LT(50), the time to reach 50 % mortality) against Galleria mellonella larvae, but LT(50) was equal for the aerial conidia and the submerged propagules of P43A and PCC. The submerged and aerial propagules of P43A were more thermotolerant than those of PCC. Each isolate performed differently in each culture system, and we concluded that the intended production method should be included as a criterion for screening of entomopathogenic fungus. We found that thermotolerance is a specific characteristic of an isolate from a given species. Because of its specific characteristics, P43A shows more promise for the development of a submerged conidia-based mycoinsecticide for foliar application in aqueous form in hot climate regions.
Collapse
Affiliation(s)
- Carrillo-Pérez Esther
- Institute of Engineering, Universidad Autónoma de Baja California, Calle de la Normal S/N, Insurgentes Este, C.P. 21280 Mexicali, B.C, Mexico
| | | | | | | |
Collapse
|