1
|
Naseem R, Howe N, Williams CJ, Pretorius S, Green K. What diagnostic tests are available for respiratory infections or pulmonary exacerbations in cystic fibrosis: A scoping literature review. Respir Investig 2024; 62:817-831. [PMID: 39024929 DOI: 10.1016/j.resinv.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
A scoping review methodological framework formed the basis of this review. A search of two electronic databases captured relevant literature published from 2013. 1184 articles were screened, 200 of which met inclusion criteria. Included studies were categorised as tests for either respiratory infections OR pulmonary exacerbations. Data were extracted to ascertain test type, sample type, and indication of use for each test type. For infection, culture is the most common testing method, particularly for bacterial infections, whereas PCR is utilised more for the diagnosis of viral infections. Spirometry tests, indicating lung function, facilitate respiratory infection diagnoses. There is no clear definition of what an exacerbation is in persons with CF. A clinical checklist with risk criteria can determine if a patient is experiencing an exacerbation event, however the diagnosis is clinician-led and will vary between individuals. Fuchs criteria are one of the most frequently used tests to assess signs and symptoms of exacerbation in persons with CF. This scoping review highlights the development of home monitoring tests to facilitate earlier and easier diagnoses, and the identification of novel biomarkers for indication of infections/exacerbations as areas of current research and development. Research is particularly prevalent regarding exhaled breath condensate and volatile organic compounds as an alternative sampling/biomarker respectively for infection diagnosis. Whilst there are a wide range of tests available for diagnosing respiratory infections and/or exacerbations, these are typically used clinically in combination to ensure a rapid, accurate diagnosis which will ultimately benefit both the patient and clinician.
Collapse
Affiliation(s)
- Raasti Naseem
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Nicola Howe
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Cameron J Williams
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Sara Pretorius
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Kile Green
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
2
|
Mac Aogáin M, Dicker AJ, Mertsch P, Chotirmall SH. Infection and the microbiome in bronchiectasis. Eur Respir Rev 2024; 33:240038. [PMID: 38960615 PMCID: PMC11220623 DOI: 10.1183/16000617.0038-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is marked by bronchial dilatation, recurrent infections and significant morbidity, underpinned by a complex interplay between microbial dysbiosis and immune dysregulation. The identification of distinct endophenotypes have refined our understanding of its pathogenesis, including its heterogeneous disease mechanisms that influence treatment and prognosis responses. Next-generation sequencing (NGS) has revolutionised the way we view airway microbiology, allowing insights into the "unculturable". Understanding the bronchiectasis microbiome through targeted amplicon sequencing and/or shotgun metagenomics has provided key information on the interplay of the microbiome and host immunity, a central feature of disease progression. The rapid increase in translational and clinical studies in bronchiectasis now provides scope for the application of precision medicine and a better understanding of the efficacy of interventions aimed at restoring microbial balance and/or modulating immune responses. Holistic integration of these insights is driving an evolving paradigm shift in our understanding of bronchiectasis, which includes the critical role of the microbiome and its unique interplay with clinical, inflammatory, immunological and metabolic factors. Here, we review the current state of infection and the microbiome in bronchiectasis and provide views on the future directions in this field.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alison J Dicker
- Respiratory Research Group, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Pontus Mertsch
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Kahl LJ, Stremmel N, Esparza-Mora MA, Wheatley RM, MacLean RC, Ralser M. Interkingdom interactions between Pseudomonas aeruginosa and Candida albicans affect clinical outcomes and antimicrobial responses. Curr Opin Microbiol 2023; 75:102368. [PMID: 37677865 DOI: 10.1016/j.mib.2023.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Infections that involve interkingdom microbial communities, such as those between bacteria and yeast pathogens, are difficult to treat, associated with worse patient outcomes, and may be a source of antimicrobial resistance. In this review, we address co-occurrence and co-infections of Candida albicans and Pseudomonas aeruginosa, two pathogens that occupy multiple infection niches in the human body, especially in immunocompromised patients. The interaction between the pathogen species influences microbe-host interactions, the effectiveness of antimicrobials and even infection outcomes, and may thus require adapted treatment strategies. However, the molecular details of bacteria-fungal interactions both inside and outside the infection sites, are insufficiently characterised. We argue that comprehensively understanding the P. aeruginosa-C. albicans interaction network through integrated systems biology approaches will capture the highly dynamic and complex nature of these polymicrobial infections and lead to a more comprehensive understanding of clinical observations such as reshaped immune defences and low antimicrobial treatment efficacy.
Collapse
Affiliation(s)
- Lisa J Kahl
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Nina Stremmel
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | | | - Rachel M Wheatley
- University of Oxford, Department of Biology, Oxford OX1 3SZ, United Kingdom
| | - R Craig MacLean
- University of Oxford, Department of Biology, Oxford OX1 3SZ, United Kingdom
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; University of Oxford, The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford OX3 7BN, United Kingdom; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
4
|
O’Connor JB, Wagner BD, Harris JK, Frank DN, Clabots DE, Laguna TA. Detection and identification of fungi in the lower airway of children with and without cystic fibrosis. Front Microbiol 2023; 14:1119703. [PMID: 36846802 PMCID: PMC9948248 DOI: 10.3389/fmicb.2023.1119703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Airway infection and inflammation lead to the progression of obstructive lung disease in persons with cystic fibrosis (PWCF). However, cystic fibrosis (CF) fungal communities, known drivers of CF pathophysiology, remain poorly understood due to the shortcomings of traditional fungal culture. Our objective was to apply a novel small subunit rRNA gene (SSU-rRNA) sequencing approach to characterize the lower airway mycobiome in children with and without CF. Methods Bronchoalveolar lavage fluid (BALF) samples and relevant clinical data were collected from pediatric PWCF and disease control (DC) subjects. Total fungal load (TFL) was measured using quantitative PCR, and SSU-rRNA sequencing was used for mycobiome characterization. Results were compared across groups, and Morisita-Horn clustering was performed. Results 161 (84%) of the BALF samples collected had sufficient load for SSU-rRNA sequencing, with amplification being more common in PWCF. BALF from PWCF had increased TFL and increased neutrophilic inflammation compared to DC subjects. PWCF exhibited increased abundance of Aspergillus and Candida, while Malassezia, Cladosporium, and Pleosporales were prevalent in both groups. CF and DC samples showed no clear differences in clustering when compared to each other or to negative controls. SSU-rRNA sequencing was used to profile the mycobiome in pediatric PWCF and DC subjects. Notable differences were observed between the groups, including the abundance of Aspergillus and Candida. Discussion Fungal DNA detected in the airway could represent a combination of pathogenic fungi and environmental exposure (e.g., dust) to fungus indicative of a common background signature. Next steps will require comparisons to airway bacterial communities.
Collapse
Affiliation(s)
- John B. O’Connor
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States,*Correspondence: John B. O’Connor, ✉
| | - Brandie D. Wagner
- University of Colorado School of Medicine, Aurora, CO, United States,Colorado School of Public Health, University of Colorado Denver, Aurora, CO, United States
| | - J. Kirk Harris
- University of Colorado School of Medicine, Aurora, CO, United States
| | - Daniel N. Frank
- University of Colorado School of Medicine, Aurora, CO, United States
| | - Diana E. Clabots
- University of Colorado School of Medicine, Aurora, CO, United States,Department of Internal Medicine, Palmetto General Hospital, Hialeah, FL, United States
| | - Theresa A. Laguna
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
Dot Immunobinding Assay for the Rapid Serodetection of Scedosporium/ Lomentospora in Cystic Fibrosis Patients. J Fungi (Basel) 2023; 9:jof9020158. [PMID: 36836272 PMCID: PMC9959861 DOI: 10.3390/jof9020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The detection of Scedosporium/Lomentospora is still based on non-standardized low-sensitivity culture procedures. This fact is particularly worrying in patients with cystic fibrosis (CF), where these fungi are the second most common filamentous fungi isolated, because a poor and delayed diagnosis can worsen the prognosis of the disease. To contribute to the discovery of new diagnostic strategies, a rapid serological dot immunobinding assay (DIA) that allows the detection of serum IgG against Scedosporium/Lomentospora in less than 15 min was developed. A crude protein extract from the conidia and hyphae of Scedosporium boydii was employed as a fungal antigen. The DIA was evaluated using 303 CF serum samples (162 patients) grouped according to the detection of Scedosporium/Lomentospora in the respiratory sample by culture, obtaining a sensitivity and specificity of 90.48% and 79.30%, respectively; positive and negative predictive values of 54.81% and 96.77%, and an efficiency of 81.72%. The clinical factors associated with the results were also studied using a univariate and a multivariate analysis, which showed that Scedosporium/Lomentospora positive sputum, elevated anti-Aspergillus serum IgG and chronic Pseudomonas aeruginosa infection were significantly associated with a positive result in DIA, while Staphylococcus aureus positive sputum showed a negative association. In conclusion, the test developed can offer a complementary, rapid, simple and sensitive method to contribute to the diagnosis of Scedosporium/Lomentospora in patients with CF.
Collapse
|
6
|
Abstract
In the past three decades, fungal respiratory colonization and fungal respiratory infections increasingly raised concern in cystic fibrosis (CF). Reasons for this are a better knowledge of the pathogenicity of fungi, whereby detection is sought in more and more CF centers, but also improvement of detection methods. However, differences in fungal detection rates within and between geographical regions exist and indicate the need for standardization of mycological examination of respiratory secretions. The still existing lack of standardization also complicates the assessment of fungal pathogenicity, relevance of fungal detection and risk factors for fungal infections. Nevertheless, numerous studies have now been conducted on differences in detection methods, epidemiology, risk factors, pathogenicity and therapy of fungal diseases in CF. Meanwhile, some research groups now have classified fungal disease entities in CF and developed diagnostic criteria as well as therapeutic guidelines.The following review presents an overview on fungal species relevant in CF. Cultural detection methods with their respective success rates as well as susceptibility testing will be presented, and the problem of increasing azole resistance in Aspergillus fumigatus will be highlighted. Next, current data and conflicting evidence on the epidemiology and risk factors for fungal diseases in patients with CF will be discussed. Finally, an overview of fungal disease entities in CF with their current definitions, diagnostic criteria and therapeutic options will be presented.
Collapse
|
7
|
Jaggi TK, Ter SK, Mac Aogáin M, Chotirmall SH. Aspergillus-Associated Endophenotypes in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:556-566. [PMID: 34261180 DOI: 10.1055/s-0041-1730947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Soo Kai Ter
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland.,Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Fungal Infection and Inflammation in Cystic Fibrosis. Pathogens 2021; 10:pathogens10050618. [PMID: 34069863 PMCID: PMC8157353 DOI: 10.3390/pathogens10050618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi are frequently recovered from lower airway samples from people with cystic fibrosis (CF), yet the role of fungi in the progression of lung disease is debated. Recent studies suggest worsening clinical outcomes associated with airway fungal detection, although most studies to date are retrospective or observational. The presence of fungi can elicit a T helper cell type 2 (Th-2) mediated inflammatory reaction known as allergic bronchopulmonary aspergillosis (ABPA), particularly in those with a genetic atopic predisposition. In this review, we discuss the epidemiology of fungal infections in people with CF, risk factors associated with development of fungal infections, and microbiologic approaches for isolation and identification of fungi. We review the spectrum of fungal disease presentations, clinical outcomes after isolation of fungi from airway samples, and the importance of considering airway co-infections. Finally, we discuss the association between fungi and airway inflammation highlighting gaps in knowledge and future research questions that may further elucidate the role of fungus in lung disease progression.
Collapse
|
9
|
Magee LC, Louis M, Khan V, Micalo L, Chaudary N. Managing Fungal Infections in Cystic Fibrosis Patients: Challenges in Clinical Practice. Infect Drug Resist 2021; 14:1141-1153. [PMID: 33790585 PMCID: PMC7998013 DOI: 10.2147/idr.s267219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease characterized by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Impairment of the CFTR protein in the respiratory tract results in the formation of thick mucus, development of inflammation, destruction of bronchial tissue, and development of bacterial or fungal infections over time. CF patients are commonly colonized and/or infected with fungal organisms, Candida albicans or Aspergillus fumigatus, with prevalence rates ranging from 5% to 78% in the literature. Risk factors for acquiring fungal organisms include older age, coinfection with Pseudomonas aeruginosa, prolonged use of oral and inhaled antibiotics, and lower forced expiratory volume (FEV1). There are limited data available to differentiate between contamination, colonization, and active infection. Furthermore, the pathogenicity of colonization is variable in the literature as some studies report a decline in lung function associated with fungal colonization whereas others showed no difference. Limited data are available for the eradication of fungal colonization and the treatment of active invasive aspergillosis in adult CF patients. In this review article, we discuss the challenges in clinical practice and current literature available for laboratory findings, clinical diagnosis, and treatment options for fungal infections in adult CF patients.
Collapse
Affiliation(s)
- Lauren C Magee
- Department of Pharmacy, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Mariam Louis
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Jacksonville, FL, USA
| | - Vaneeza Khan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lavender Micalo
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nauman Chaudary
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Patel D, Dacanay KC, Pashley CH, Gaillard EA. Comparative Analysis of Clinical Parameters and Sputum Biomarkers in Establishing the Relevance of Filamentous Fungi in Cystic Fibrosis. Front Cell Infect Microbiol 2021; 10:605241. [PMID: 33553007 PMCID: PMC7862329 DOI: 10.3389/fcimb.2020.605241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Background The relationship between fungal culture (FC) positivity and airway inflammation in CF is largely unknown. Identifying the clinical significance of filamentous fungi in CF using both clinical parameters and biomarkers may change our antimicrobial therapeutic strategies. Objectives To investigate the clinical characteristics and airway biomarker profile in relation to the detection of filamentous fungi in respiratory samples obtained from CF patients. Methods A prospective cohort study over 24 months, including children and adults with CF. Participants provided sputum and/or bronchoalveolar lavage samples, which underwent processing for bacterial and fungal culture, leukocyte differential cell count and biomarker analysis for neutrophil elastase (NE), interleukin-8 (IL-8), galactomannan and tumor necrosis factor receptor type 2 (TNF-R2). We performed FC using neat sputum plugs, an approach shown to be more sensitive compared to routine laboratory testing. Results Sixty-one patients provided 76 respiratory samples (72 sputum and 4 BAL). Median age was 17 years (range 6 months-59 years). FC positivity was noted in 49% of the cohort. FC positivity was greater during pulmonary exacerbation compared to the stable state (67 versus 50%). Participants aged 5-30 years had a lower FEV1 within the FC positive group. A significant association between FC positivity and non-tuberculosis mycobacterial (NTM) culture was observed on non-parametric testing (p = 0.022) and regression analysis (p = 0.007). Exposure to indoor mold was a predictor for FC positivity (p = 0.047). There was a trend towards increased lung clearance index (LCI), bronchiectasis and intravenous antibiotic use in the FC positive group. There was no significant difference in biomarkers between FC positive and negative patients. Conclusion Aspergillus. fumigatus is the commonest filamentous fungi cultured from CF airways. We found no difference in the airway biomarker profile between FC positive and negative patients. The role of galactomannan and TNFR2 as fungal specific biomarkers in CF remains uncertain. FC positivity is associated with a lower FEV1 in younger patients, a lower LCI, NTM positivity, bronchiectasis, and intravenous antibiotic exposure. Larger trials are needed to determine the role of galactomannan and TNF-R2 as potential fungal biomarkers in CF.
Collapse
Affiliation(s)
- Deepa Patel
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Paediatric Respiratory Department, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Keith Chester Dacanay
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Institute for Lung Health, NIHR Respiratory Biomedical Research Center, Leicester, United Kingdom
| | - Catherine H Pashley
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Institute for Lung Health, NIHR Respiratory Biomedical Research Center, Leicester, United Kingdom
| | - Erol A Gaillard
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Paediatric Respiratory Department, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Institute for Lung Health, NIHR Respiratory Biomedical Research Center, Leicester, United Kingdom
| |
Collapse
|
11
|
Martin-Souto L, Buldain I, Areitio M, Aparicio-Fernandez L, Antoran A, Bouchara JP, Martin-Gomez MT, Rementeria A, Hernando FL, Ramirez-Garcia A. ELISA Test for the Serological Detection of Scedosporium/ Lomentospora in Cystic Fibrosis Patients. Front Cell Infect Microbiol 2020; 10:602089. [PMID: 33324582 PMCID: PMC7726441 DOI: 10.3389/fcimb.2020.602089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
The detection and diagnosis of the opportunistic fungi Scedosporium spp. and Lomentospora prolificans still relies mainly on low-sensitive culture-based methods. This fact is especially worrying in Cystic Fibrosis (CF) patients in whom these fungal species are frequently isolated and may increase the risk of suffering from an infection or other health problems. Therefore, with the purpose of developing a serologic detection method for Scedosporium/Lomentospora, four different Scedosporium boydii protein extracts (whole cell protein extract, secretome, total cell surface and conidial surface associated proteins) were studied by ELISA to select the most useful for IgG detection in sera from CF patients. The four extracts were able to discriminate the Scedosporium/Lomentospora-infected from Aspergillus-infected and non-infected patients. However, the whole cell protein extract was the one selected, as it was the one with the highest output in terms of protein concentration per ml of fungal culture used, and its discriminatory capacity was the best. The ELISA test developed was then assayed with 212 sera from CF patients and it showed to be able to detect Scedosporium spp. and Lomentospora prolificans with very high sensitivity and specificity, 86%–100% and 93%–99%, respectively, depending on the cut-off value chosen (four values were proposed A450nm= 0.5837, A450nm= 0.6042, A450nm= 0.6404, and A450nm= 0.7099). Thus, although more research is needed to reach a standardized method, this ELISA platform offers a rapid, low-cost and easy solution to detect these elusive fungi through minimally invasive sampling, allowing the monitoring of the humoral response to fungal presence.
Collapse
Affiliation(s)
- Leire Martin-Souto
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maialen Areitio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Leire Aparicio-Fernandez
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, Institut de Biologie en Santé-IRIS, Centre Hospitalier Universitaire, Angers, France
| | | | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
12
|
Tiew PY, Mac Aogain M, Ali NABM, Thng KX, Goh K, Lau KJX, Chotirmall SH. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia 2020; 185:207-231. [PMID: 31894501 PMCID: PMC7223441 DOI: 10.1007/s11046-019-00413-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Fungal disease is an increasingly recognised global clinical challenge associated with high mortality. Early diagnosis of fungal infection remains problematic due to the poor sensitivity and specificity of current diagnostic modalities. Advances in sequencing technologies hold promise in addressing these shortcomings and for improved fungal detection and identification. To translate such emerging approaches into mainstream clinical care will require refinement of current sequencing and analytical platforms, ensuring standardisation and consistency through robust clinical benchmarking and its validation across a range of patient populations. In this state-of-the-art review, we discuss current diagnostic and therapeutic challenges associated with fungal disease and provide key examples where the application of sequencing technologies has potential diagnostic application in assessing the human ‘mycobiome’. We assess how ready access to fungal sequencing may be exploited in broadening our insight into host–fungal interaction, providing scope for clinical diagnostics and the translation of emerging mycobiome research into clinical practice.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | | | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Karlyn Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kenny J X Lau
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
13
|
Fungal Infections and ABPA. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Bouchara JP, Le Govic Y, Kabbara S, Cimon B, Zouhair R, Hamze M, Papon N, Nevez G. Advances in understanding and managing Scedosporium respiratory infections in patients with cystic fibrosis. Expert Rev Respir Med 2019; 14:259-273. [PMID: 31868041 DOI: 10.1080/17476348.2020.1705787] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Considered for a long time to be exclusively responsible for chronic localized infections, fungi of the genus Scedosporium have recently received a renewed interest because of their recognition as common colonizing agents of the respiratory tract of patients with cystic fibrosis, and of the description of severe disseminated infections in patients undergoing lung transplantation. Recently, several studies have been carried out on these opportunistic pathogens, which led to some advances in the understanding of their pathogenic mechanisms and in the biological diagnosis of the airway colonization/respiratory infections caused by these fungi.Areas covered: From a bibliographic search on the Pubmed database, we summarize the current knowledge about the taxonomy of Scedosporium species, the epidemiology of these fungi and their pathogenic mechanisms, and present the improvements in the detection of the airway colonization and diagnosis of Scedosporium respiratory infections, the difficulties in their therapeutic management, and the antifungal drugs in development.Expert opinion: As described in this review, many advances have been made regarding the taxonomy and ecology of Scedosporium species or the molecular determinants of their pathogenicity, but also in the management of Scedosporium infections, particularly by improving the biological diagnostic and publishing evidence for the efficacy of combined therapy.
Collapse
Affiliation(s)
- Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Yohann Le Govic
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Samar Kabbara
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Bernard Cimon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Rachid Zouhair
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| | - Gilles Nevez
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV Brest, Brest, France
| |
Collapse
|
15
|
Fungal Respiratory Infections in Cystic Fibrosis (CF): Recent Progress and Future Research Agenda. Mycopathologia 2019; 183:1-5. [PMID: 29349726 DOI: 10.1007/s11046-017-0241-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Tracy MC, Moss RB. The myriad challenges of respiratory fungal infection in cystic fibrosis. Pediatr Pulmonol 2018; 53:S75-S85. [PMID: 29992775 DOI: 10.1002/ppul.24126] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
Abstract
Fungal infection in cystic fibrosis (CF) is a recognized challenge, with many areas requiring further investigation. Consensus definitions exist for allergic bronchopulmonary aspergillus in CF, but the full scope of clinically relevant non-allergic fungal disease in CF-asymptomatic colonization, transient or chronic infection localized to endobronchial mucus plugs or airway tissue, and invasive disease-is yet to be clearly defined. Recent advances in mycological culture and non-culture identification have expanded the list of both potential pathogens and community commensals in the lower respiratory tract. Here we aim to outline the current understanding of fungal presence in the CF respiratory tract, risk factors for acquiring fungi, host-pathogen interactions that influence the role of fungi from bystander to pathogen, advances in the diagnostic approaches to isolating and identifying fungi in CF respiratory samples, challenges of classifying clinical phenotypes of CF patients with fungi, and current treatment approaches. Development and validation of biomarkers characteristic of different fungal clinical phenotypes, and controlled trials of antifungal agents in well-characterized target populations, remain central challenges to surmount and goals to be achieved.
Collapse
Affiliation(s)
- Michael C Tracy
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Palo Alto, California
| | - Richard B Moss
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Palo Alto, California
| |
Collapse
|
17
|
Nevalainen H, Kaur J, Han Z, Kautto L, Ramsperger M, Meyer W, Chen SCA. Biological, biochemical and molecular aspects of Scedosporium aurantiacum, a primary and opportunistic fungal pathogen. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Laboratory Diagnosis and Characterization of Fungal Disease in Patients with Cystic Fibrosis (CF): A Survey of Current UK Practice in a Cohort of Clinical Microbiology Laboratories. Mycopathologia 2018; 183:723-729. [PMID: 29500636 DOI: 10.1007/s11046-018-0251-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/13/2018] [Indexed: 10/17/2022]
Abstract
There is much uncertainty as to how fungal disease is diagnosed and characterized in patients with cystic fibrosis (CF). A 19-question anonymous electronic questionnaire was developed and distributed to ascertain current practice in clinical microbiology laboratories providing a fungal laboratory service to CF centres in the UK. Analyses of responses identified the following: (1) current UK laboratory practice, in general, follows the current guidelines, but the scope and diversity of what is currently being delivered by laboratories far exceeds what is detailed in the guidelines; (2) there is a lack of standardization of fungal tests amongst laboratories, outside of the current guidelines; (3) both the UK CF Trust Laboratory Standards for Processing Microbiological Samples from People with Cystic Fibrosis and the US Cumulative Techniques and Procedures in Clinical Microbiology (Cumitech) Guidelines 43 Cystic Fibrosis Microbiology need to be updated to reflect both new methodological innovations, as well as better knowledge of fungal disease pathophysiology in CF; (4) there is a need for clinical medicine to decide upon a stratification strategy for the provision of new fungal assays that will add value to the physician in the optimal management of CF patients; (5) there is also a need to rationale what assays should be performed at local laboratory level and those which are best served at National Mycology Reference Laboratory level; and (6) further research is required in developing laboratory assays, which will help ascertain the clinical importance of 'old' fungal pathogens, as well as 'emerging' fungal pathogens.
Collapse
|