1
|
Kiyohara M, Miyazaki T, Okamoto M, Hirayama T, Makimura K, Chibana H, Nakada N, Ito Y, Sumiyoshi M, Ashizawa N, Takeda K, Iwanaga N, Takazono T, Izumikawa K, Yanagihara K, Kohno S, Mukae H. Evaluation of a Novel FKS1 R1354H Mutation Associated with Caspofungin Resistance in Candida auris Using the CRISPR-Cas9 System. J Fungi (Basel) 2023; 9:jof9050529. [PMID: 37233240 DOI: 10.3390/jof9050529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Outbreaks of invasive infections, with high mortality rates, caused by multidrug-resistant Candida auris have been reported worldwide. Although hotspot mutations in FKS1 are an established cause of echinocandin resistance, the actual contribution of these mutations to echinocandin resistance remains unknown. Here, we sequenced the FKS1 gene of a caspofungin-resistant clinical isolate (clade I) and identified a novel resistance mutation (G4061A inducing R1354H). We applied the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to generate a recovered strain (H1354R) in which only this single nucleotide mutation was reverted to its wild-type sequence. We also generated mutant strains with only the R1354H mutation introduced into C. auris wild-type strains (clade I and II) and analyzed their antifungal susceptibility. Compared to their parental strains, the R1354H mutants exhibited a 4- to 16-fold increase in caspofungin minimum inhibitory concentration (MIC) while the H1354R reverted strain exhibited a 4-fold decrease in caspofungin MIC. In a mouse model of disseminated candidiasis, the in vivo therapeutic effect of caspofungin was more closely related to the FKS1 R1354H mutation and the virulence of the strain than its in vitro MIC. The CRISPR-Cas9 system could thus aid in elucidating the mechanism underlying drug resistance in C. auris.
Collapse
Affiliation(s)
- Maiko Kiyohara
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Tatsuro Hirayama
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Koichi Makimura
- Teikyo University Institute of Medical Mycology, Tokyo 192-0395, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Nana Nakada
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yuya Ito
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Makoto Sumiyoshi
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Nobuyuki Ashizawa
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Shigeru Kohno
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
2
|
Dennis EK, Chaturvedi S, Chaturvedi V. So Many Diagnostic Tests, So Little Time: Review and Preview of Candida auris Testing in Clinical and Public Health Laboratories. Front Microbiol 2021; 12:757835. [PMID: 34691009 PMCID: PMC8529189 DOI: 10.3389/fmicb.2021.757835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
The recognition of a new yeast, Candida auris, in 2009 in East Asia, and its rapid global spread, was a reminder of the threats posed by multidrug-resistant fungal pathogens. C. auris had likely remained unrecognized for a long time as accurate tests were not available. The laboratory community responded to the C. auris challenge by publishing 35 new or revised diagnostic methods between 2014 and early 2021. The commercial sector also modified existing diagnostic devices. These C. auris diagnostic tests run the gamut from traditional culture-based differential and selective media, biochemical assimilations, and rapid protein profiles, as well as culture-independent DNA-based diagnostics. We provide an overview of these developments, especially the tests with validation data that were subsequently adopted for common use. We share a workflow developed in our laboratory to process over 37,000 C. auris surveillance samples and 5,000 C. auris isolates from the outbreak in the New York metropolitan area. Our preview covers new devices and diagnostic approaches on the horizon based on microfluidics, optics, and nanotechnology. Frontline laboratories need rapid, cheap, stable, and easy-to-implement tests to improve C. auris diagnosis, surveillance, patient isolation, admission screening, and environmental control. Among the urgent needs is a lateral flow assay or similar device for presumptive C. auris identification. All laboratories will benefit from devices that allow rapid antifungal susceptibility testing, including detection of mutations conferring drug resistance. Hopefully, multiplex test panels are on the horizon for synergy of C. auris testing with ongoing surveillance of other healthcare-associated infections. C. auris genome analysis has a proven role for outbreak investigations, and diagnostic laboratories need quick access to regional and national genome analysis networks.
Collapse
Affiliation(s)
- Emily K Dennis
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany, Albany, NY, United States
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| |
Collapse
|