1
|
Garvey M, Kremer TA, Rowan NJ. Efficacy of cleaning, disinfection, and sterilization modalities for addressing infectious drug-resistant fungi: a review. J Appl Microbiol 2025; 136:lxaf005. [PMID: 39774830 DOI: 10.1093/jambio/lxaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
This is a timely and important review that focuses on the appropriateness of established cleaning, disinfection, and sterilization methods to safely and effectively address infectious fungal drug-resistant pathogens that can potentially contaminate reusable medical devices used in healthcare environment in order to mitigate the risk of patient infection. The release of the World Health Organization (WHO) fungal priority pathogen list (FPPL) in 2022 highlighted the public health crisis of antimicrobial resistance (AMR) in clinically relevant fungal species. Contamination of medical devices with drug-resistant fungal pathogens (including those on the FPPL) in healthcare is a rare event that is more likely to occur due to cross-transmission arising from lapses in hand hygiene practices. Established disinfection and sterilization methods decontaminate fungal pathogens on single-use and reusable medical devices; however, there are assumptions that reusable devices destined for semi-critical use are appropriately cleaned and do not harbour biofilms that may undermine the ability to effectively decontamination these type devices in healthcare. International standards dictate that manufacturer's instructions for use must provide appropriate guidance to healthcare facilities to meet safe reprocessing expectations that include addressing drug-resistant fungal pathogens. Increased environmental monitoring and vigilance surrounding fungal pathogens in healthcare is advised, including adherence to hand hygiene/aseptic practices and appropriate cleaning encompassing the simplification of reusable device features for 'ease-of-reach'. There are emereging opportunities to promote a more integrated multiactor hub approach to addressing these sophisticated challenges, including future use of artificial intelligence and machine learning for improved diagnostics, monitoring/surveillance (such as healthcare and wastewater-based epidemiology), sterility assurance, and device design. There is a knowledge gap surrounding the occurrence and potential persistence of drug-resistant fungal pathogens harboured in biofilms, particularly for ascertaining efficacy of high-level disinfection for semi-critical use devices.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo F91 YW50, Ireland
| | - Terra A Kremer
- Centre for Sustainable Disinfection and Sterilization, Technological University of the Shannon, Athlone Campus, Co. Westmeath, N37 HD68, Ireland
- Microbiological Quality and Quality Assurance, Johnson & Johnson, 1000 Route 202, South Raritan, NJ 08869, United States
| | - Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Technological University of the Shannon, Athlone Campus, Co. Westmeath, N37 HD68, Ireland
- SFI-funded CURAM Centre for Medical Device Research, University of Galway, Ireland
| |
Collapse
|
2
|
Dornelles G, Araújo GRDS, Rodrigues M, Alves V, Almeida-Paes R, Frases S. Comparative Analysis of Capsular and Secreted Polysaccharides Produced by Rhodotorula mucilaginosa and Cryptococcus neoformans. J Fungi (Basel) 2023; 9:1124. [PMID: 37998929 PMCID: PMC10672113 DOI: 10.3390/jof9111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Fungal infections are a global public health challenge, especially among immunocompromised patients. Basidiomycetous yeasts, such as Rhodotorula mucilaginosa, have emerged as opportunistic pathogens, but have received less attention than Cryptococcus neoformans. This study aimed to characterize the polysaccharides of R. mucilaginosa and compare them with those of C. neoformans, analyzing their clinical implications. Comprehensive physicochemical, mechanical, and ultrastructural analyses of polysaccharides from both species were performed, revealing correlations with virulence and pathogenicity. R. mucilaginosa cells are surrounded by a capsule smaller than that produced by C. neoformans, but with similar polysaccharides. Those polysaccharides are also secreted by R. mucilaginosa. Cross-reactivity with R. mucilaginosa was observed in a diagnostic C. neoformans antigen test, using both in vitro and in vivo samples, highlighting the need for more reliable tests. Some R. mucilaginosa strains exhibited virulence comparable to that of C. neoformans in an invertebrate experimental model (Tenebrio molitor). This study contributes to a deeper understanding of yeast pathogenicity and virulence, highlighting the need for more accurate diagnostic tests to improve the differential diagnosis of infections caused by basidiomycetous yeasts.
Collapse
Affiliation(s)
- Gustavo Dornelles
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Glauber R. de S. Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Marcus Rodrigues
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21040-360, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
3
|
Idris NFB, Jia Q, Lu H, Guo Y, Wang Y, Hao R, Tu Z. Reduced Survival and Resistance of Rhodotorula mucilaginosa Following Inhibition of Pigment Production by Naftifine. Curr Microbiol 2023; 80:285. [PMID: 37452917 DOI: 10.1007/s00284-023-03388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Pigments produced by micro-organisms could contribute to their pathogenesis and resistance. The investigation into the red pigment of R. mucilaginosa and its ability to survive and resist has not yet been explored. This study aimed to investigate the survival and resistance of the R. mucilaginosa CQMU1 strain following inhibition of pigment production by naftifine and its underlying mechanism. The red-pigmented Rhodotorula mucilaginosa CQMU1 yeast was isolated from an infected toenail of a patient with onychomycosis. Cultivation of R. mucilaginosa in liquid and solid medium showed the effect of naftifine after treatment. Then, analysis of phagocytosis and tolerance to heat or chemicals of R. mucilaginosa was used to evaluate the survival and resistance of yeast to different treatments. Naftifine reversibly inhibited the pigmentation of R. mucilaginosa CQMU1 in solid and liquid media. Depigmented R. mucilaginosa CQMU1 showed increased susceptibility toward murine macrophage cells RAW264.7 and reduced resistance toward different types of chemicals, such as 1.5-M NaCl and 0.5% Congo red. Inhibition of pigment production by naftifine affected the survival and growth of R. mucilaginosa and its resistance to heat and certain chemicals. The results obtained could further elucidate the target of new mycosis treatment.
Collapse
Affiliation(s)
- Nur Fazleen Binti Idris
- Department of pathogen biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qianying Jia
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Nursing Vocational College, Chongqing, 402763, China
| | - He Lu
- Department of pathogen biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yanan Guo
- Department of pathogen biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Wang
- Department of pathogen biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Hao
- Department of pathogen biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zeng Tu
- Department of pathogen biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Salvador A, Veiga FF, Svidzinski TIE, Negri M. Case of Mixed Infection of Toenail Caused by Candida parapsilosis and Exophiala dermatitidis and In Vitro Effectiveness of Propolis Extract on Mixed Biofilm. J Fungi (Basel) 2023; 9:jof9050581. [PMID: 37233292 DOI: 10.3390/jof9050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Onychomycosis is a chronic fungal nail infection caused by several filamentous and yeast-like fungi, such as the genus Candida spp., of great clinical importance. Black yeasts, such as Exophiala dermatitidis, a closely related Candida spp. species, also act as opportunistic pathogens. Fungi infectious diseases are affected by organisms organized in biofilm in onychomycosis, making treatment even more difficult. This study aimed to evaluate the in vitro susceptibility profile to propolis extract and the ability to form a simple and mixed biofilm of two yeasts isolated from the same onychomycosis infection. The yeasts isolated from a patient with onychomycosis were identified as Candida parapsilosis sensu stricto and Exophiala dermatitidis. Both yeasts were able to form simple and mixed (in combination) biofilms. Notably, C. parapsilosis prevailed when presented in combination. The susceptibility profile of propolis extract showed action against E. dermatitidis and C. parapsilosis in planktonic form, but when the yeasts were in mixed biofilm, we only observed action against E. dermatitidis, until total eradication.
Collapse
Affiliation(s)
- Alana Salvador
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| | - Flávia Franco Veiga
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| | - Terezinha Inez Estivalet Svidzinski
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| | - Melyssa Negri
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| |
Collapse
|
5
|
Costa PDS, Prado A, Bagon NP, Negri M, Svidzinski TIE. Mixed Fungal Biofilms: From Mycobiota to Devices, a New Challenge on Clinical Practice. Microorganisms 2022; 10:microorganisms10091721. [PMID: 36144323 PMCID: PMC9506030 DOI: 10.3390/microorganisms10091721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that allow the evaluation of fungal morphology and the identification of the etiologic agent of mycosis. Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that enable the examination of the fungi for further identification of the etiological agent of the mycosis. The isolation of fungi from pure cultures is typically recommended, as when more than one species is identified, the second agent is considered a contaminant. Fungi mostly survive in highly organized communities that provoke changes in phenotypic profile, increase resistance to antifungals and environmental stresses, and facilitate evasion from the immune system. Mixed fungal biofilms (MFB) harbor more than one fungal species, wherein exchange can occur that potentialize the effects of these virulence factors. However, little is known about MFB and their role in infectious processes, particularly in terms of how each species may synergistically contribute to the pathogenesis. Here, we review fungi present in MFB that are commensals of the human body, forming the mycobiota, and how their participation in MFB affects the maintenance of homeostasis. In addition, we discuss how MFB are formed on both biotic and abiotic surfaces, thus being a significant reservoir of microorganisms that have already been associated in infectious processes of high morbidity and mortality.
Collapse
|