1
|
Mast J, Van Miert E, Siciliani L, Cheyns K, Blaude MN, Wouters C, Waegeneers N, Bernsen R, Vleminckx C, Van Loco J, Verleysen E. Application of silver-based biocides in face masks intended for general use requires regulatory control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161889. [PMID: 36731552 PMCID: PMC9886386 DOI: 10.1016/j.scitotenv.2023.161889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 04/14/2023]
Abstract
Silver-based biocides are applied in face masks because of their antimicrobial properties. The added value of biocidal silver treatment of face masks to control SARS-CoV-2 infection needs to be balanced against possible toxicity due to inhalation exposure. Direct measurement of silver (particle) release to estimate exposure is problematic. Therefore, this study optimized methodologies to characterize silver-based biocides directly in the face masks, by measuring their total silver content using ICP-MS and ICP-OES based methods, and by visualizing the type(s) and localization of silver-based biocides using electron microscopy based methods. Thirteen of 20 selected masks intended for general use contained detectable amounts of silver ranging from 3 μg to 235 mg. Four of these masks contained silver nanoparticles, of which one mask was silver coated. Comparison of the silver content with limit values derived from existing inhalation exposure limits for both silver ions and silver nanoparticles allowed to differentiate safe face masks from face masks that require a more extensive safety assessment. These findings urge for in depth characterization of the applications of silver-based biocides and for the implementation of regulatory standards, quality control and product development based on the safe-by-design principle for nanotechnology applications in face masks in general.
Collapse
Affiliation(s)
- Jan Mast
- Trace Elements and Nanomaterials, Chemical and Physical Health Risks, Sciensano, Uccle, Belgium.
| | - Erik Van Miert
- Risk and Health Impact Assessment, Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - Lisa Siciliani
- Trace Elements and Nanomaterials, Chemical and Physical Health Risks, Sciensano, Uccle, Belgium.
| | - Karlien Cheyns
- Trace Elements and Nanomaterials, Chemical and Physical Health Risks, Sciensano, Uccle, Belgium.
| | - Marie-Noëlle Blaude
- Risk and Health Impact Assessment, Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Charlotte Wouters
- Trace Elements and Nanomaterials, Chemical and Physical Health Risks, Sciensano, Uccle, Belgium.
| | - Nadia Waegeneers
- Risk and Health Impact Assessment, Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - Ruud Bernsen
- Thermo Fisher Scientific, Eindhoven, the Netherlands.
| | - Christiane Vleminckx
- Risk and Health Impact Assessment, Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - Joris Van Loco
- Trace Elements and Nanomaterials, Chemical and Physical Health Risks, Sciensano, Uccle, Belgium; Risk and Health Impact Assessment, Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - Eveline Verleysen
- Trace Elements and Nanomaterials, Chemical and Physical Health Risks, Sciensano, Uccle, Belgium.
| |
Collapse
|
2
|
Blevens MS, Pastrana HF, Mazzotta HC, Tsai CSJ. Cloth Face Masks Containing Silver: Evaluating the Status. ACS CHEMICAL HEALTH & SAFETY 2021; 28:171-182. [PMID: 37556257 PMCID: PMC8084270 DOI: 10.1021/acs.chas.1c00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/03/2022]
Abstract
Amid the coronavirus disease 2019 pandemic, demand for cloth face masks containing nanosilver has increased. Common product claims such as "antiviral" and "antimicrobial" can be attractive to buyers seeking to protect themselves from this respiratory disease, but it is important to note that filtration capabilities are the main factor to prevent virus transmission and that antimicrobial ability is a secondary protection factor. Silver has long been known to be antibacterial, and growing research supports additional antiviral properties. In this study, 40 masks claiming to contain silver were evaluated for substantiated antiviral and antimicrobial claims using methods available to the public. Criteria for determining the validity of substantiated claims included the use of patented technology, international certification for antimicrobial and/or antiviral textile by ISO or ASTM, EPA pesticide registration, and peer-reviewed literature. Our analysis showed that, of the 40 masks, 21 had substantiated claims. Using scanning electron microscopy (SEM), two of the substantiated face masks (A and B) were examined for silver identification for further confirmation. Mask A uses silver and copper ions attached to zeolite particles; the zeolite particles discovered through SEM were approximately 90-200 nm in diameter. In mask B, particles of silver and titanium at the 250 nm size were found. In conclusion, these certifications or patents are not enough to determine credibility, and stricter regulations by federal agencies on product testing for manufacturers that make claims are necessary to ensure the efficacy of the product advertised, as well as a cloth face mask inhalation standard.
Collapse
Affiliation(s)
- Melissa S. Blevens
- Environmental Health, Department of Environmental and
Radiological Health Sciences, Colorado State University, 1681
Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Homero F. Pastrana
- Facultad de Medicina, Grupo de Investigación en
Ciencias Biomédicas, Universidad Antonio Nariño,
Bogotá D.C., Colombia, 110231
| | - Hannah C. Mazzotta
- Colorado School of Public Health, Colorado
State University, 1612 Campus Delivery, Fort Collins, Colorado 80523,
United States
| | - Candace Su-Jung Tsai
- Environmental Health, Department of Environmental and
Radiological Health Sciences, Colorado State University, 1681
Campus Delivery, Fort Collins, Colorado 80523, United States
- Department of Environmental Health Sciences, Fielding
School of Public Health, University of California, Los Angeles,
650 Charles E. Young Drive South, Los Angeles, California 90095, United
States
| |
Collapse
|
3
|
Pearce K, Goldsmith WT, Greenwald R, Yang C, Mainelis G, Wright C. Characterization of an aerosol generation system to assess inhalation risks of aerosolized nano-enabled consumer products. Inhal Toxicol 2019; 31:357-367. [PMID: 31779509 DOI: 10.1080/08958378.2019.1685613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: The aerosolization of common nano-enabled consumer products such as cosmetics has significantly increased engineered nanoparticle inhalation risks. While several studies have investigated the impact of cosmetic dermal exposures, inhalation hazards of aerosolized cosmetics are much less known but could pose considerable harm to users due to potential co-exposure of nanoparticles and other product components.Materials and Methods: In this study, we developed a fully automated aerosol generation system to examine the aerosol properties of four aerosolized nano-enabled cosmetics using real-time monitoring and sampling instrumentation. Physicochemical characterization of aerosols was conducted using scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM-EDX). Characterization and calibration of animal exposure pods coupled to the system were also performed by measuring and comparing particle concentrations between pods.Results and Discussion: Results show peak emissions are shade dependent and varied between 12,000-22,000 particles/cm3 with modal diameters ranging from 36 nm-1.3 µm. SEM-EDX analysis determined that the original products and collected aerosols have similar morphological features consisting of micron-sized particles decorated with nanoparticles and crystalline structures. Mean total particle concentration in pods at 5 and 10 mg/m3 target levels were 2.22E + 05 #/cm3 and 4.33E + 05 #/cm3, respectively, with <10% variability between pods.Conclusions: The fully automated exposure platform described herein provides reproducible aerosol generation, conforms to recommended guidelines on chemical testing, and therefore is suitable for future in vivo toxicological assessments to examine potential respiratory hazards of aerosolized nano-enabled consumer products.
Collapse
Affiliation(s)
- K Pearce
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - W T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.,Center for Inhalation Toxicology, West Virginia University, Morgantown, WV, USA
| | - R Greenwald
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - C Yang
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| | - G Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - C Wright
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| |
Collapse
|