1
|
Asraf K, Zaidan H, Natoor B, Gaisler-Salomon I. Synergistic, long-term effects of glutamate dehydrogenase 1 deficiency and mild stress on cognitive function and mPFC gene and miRNA expression. Transl Psychiatry 2023; 13:248. [PMID: 37419882 DOI: 10.1038/s41398-023-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Glutamate abnormalities in the medial prefrontal cortex (mPFC) are associated with cognitive deficits. We previously showed that homozygous deletion of CNS glutamate dehydrogenase 1 (Glud1), a metabolic enzyme critical for glutamate metabolism, leads to schizophrenia-like behavioral abnormalities and increased mPFC glutamate; mice heterozygous for CNS Glud1 deletion (C-Glud1+/- mice) showed no cognitive or molecular abnormalities. Here, we examined the protracted behavioral and molecular effects of mild injection stress on C-Glud1+/- mice. We found spatial and reversal learning deficits, as well as large-scale mPFC transcriptional changes in pathways associated with glutamate and GABA signaling, in stress-exposed C-Glud1+/- mice, but not in their stress-naïve or C-Glud1+/+ littermates. These effects were observed several weeks following stress exposure, and the expression levels of specific glutamatergic and GABAergic genes differentiated between high and low reversal learning performance. An increase in miR203-5p expression immediately following stress may provide a translational regulatory mechanism to account for the delayed effect of stress exposure on cognitive function. Our findings show that chronic glutamate abnormalities interact with acute stress to induce cognitive deficits, and resonate with gene x environment theories of schizophrenia. Stress-exposed C-Glud1+/- mice may model a schizophrenia high-risk population, which is uniquely sensitive to stress-related 'trigger' events.
Collapse
Affiliation(s)
- Kfir Asraf
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Hiba Zaidan
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Baylasan Natoor
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
2
|
Smagin DA, Galyamina AG, Kovalenko IL, Kudryavtseva NN. Altered Expression of Genes Associated with Major Neurotransmitter Systems in the Reward-Related Brain Regions of Mice with Positive Fighting Experience. Int J Mol Sci 2022; 23:13644. [PMID: 36362437 PMCID: PMC9655062 DOI: 10.3390/ijms232113644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
The main neurotransmitters in the brain-dopamine, γ-aminobutyric acid (GABA), glutamate, and opioids-are recognized to be the most important for the regulation of aggression and addiction. The aim of this work was to study differentially expressed genes (DEGs) in the main reward-related brain regions, including the ventral tegmental area (VTA), dorsal striatum (STR), ventral striatum (nucleus accumbens, NAcc), prefrontal cortex (PFC), and midbrain raphe nuclei (MRNs), in male mice with 20-day positive fighting experience in daily agonistic interactions. Expression of opioidergic, catecholaminergic, glutamatergic, and GABAergic genes was analyzed to confirm or refute the influence of repeated positive fighting experience on the development of "addiction-like" signs shown in our previous studies. High-throughput RNA sequencing was performed to identify differentially expressed genes in the brain regions of chronically aggressive mice. In the aggressive mice, upregulation of opioidergic genes was shown (Oprk1 in VTA, Pdyn in NAcc, Penk in PFC, and Oprd1 in MRNs and PFC), as was downregulation of genes Opcml and Oprk1 in STR and Pomc in VTA and NAcc. Upregulation of catecholaminergic genes in VTA (Ddc and Slc6a2) and in NAcc (Th and Drd2) and downregulation of some differentially expressed genes in MRNs (Th, Ddc, Dbh, Drd2, Slc18a2, and Sncg) and in VTA (Adra2c, Sncg, and Sncb) were also documented. The expression of GABAergic and glutamatergic genes that participate in drug addiction changed in all brain regions. According to literature data, the proteins encoded by genes Drd2, Oprk1, Oprd1, Pdyn, Penk, and Pomc are directly involved in drug addiction in humans. Thus, our results confirm our earlier claim about the formation of addiction-like signs following repeated positive fighting experience in mice, as shown previously in our biobehavioral studies.
Collapse
Affiliation(s)
| | | | | | - Natalia N. Kudryavtseva
- Neuropathology Modeling Laboratory, Neurogenetics of Social Behavior Sector, FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Galyamina AG, Smagin DA, Kovalenko IL, Redina OE, Babenko VN, Kudryavtseva NN. The Dysfunction of Carcinogenesis- and Apoptosis-Associated Genes that Develops in the Hypothalamus under Chronic Social Defeat Stress in Male Mice. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1050-1064. [PMID: 36180995 DOI: 10.1134/s0006297922090152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Chronic social stress caused by daily agonistic interactions in male mice leads to a mixed anxiety/depression-like disorder that is accompanied by the development of psychogenic immunodeficiency and stimulation of oncogenic processes concurrently with many neurotranscriptomic changes in brain regions. The aim of the study was to identify carcinogenesis- and apoptosis-associated differentially expressed genes (DEGs) in the hypothalamus of male mice with depression-like symptoms and, for comparison, in aggressive male mice with positive social experience. To obtain two groups of animals with the opposite 20-day social experiences, a model of chronic social conflict was used. Analysis of RNA-Seq data revealed similar expression changes for many DEGs between the aggressive and depressed animals in comparison with the control group; however, the number of DEGs was significantly lower in the aggressive than in the depressed mice. It is likely that the observed unidirectional changes in the expression of carcinogenesis- and apoptosis-associated genes in the two experimental groups may be a result of prolonged social stress (of different severity) caused by the agonistic interactions. In addition, 26 DEGs were found that did not change expression in the aggressive animals and could be considered genes promoting carcinogenesis or inhibiting apoptosis. Akt1, Bag6, Foxp4, Mapk3, Mapk8, Nol3, Pdcd10, and Xiap were identified as genes whose expression most strongly correlated with the expression of other DEGs, suggesting that their protein products play a role in coordination of the neurotranscriptomic changes in the hypothalamus. Further research into functions of these genes may be useful for the development of pharmacotherapies for psychosomatic pathologies.
Collapse
Affiliation(s)
- Anna G Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitry A Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina L Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga E Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir N Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia N Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| |
Collapse
|
4
|
Bangsumruaj J, Kijtawornrat A, Kalandakanond-Thongsong S. Effects of chronic mild stress on GABAergic system in the paraventricular nucleus of hypothalamus associated with cardiac autonomic activity. Behav Brain Res 2022; 432:113985. [PMID: 35787398 DOI: 10.1016/j.bbr.2022.113985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Stress is associated with cardiovascular diseases. One possible mechanism is the reduction in gamma-aminobutyric acid (GABA)ergic transmission at the paraventricular nucleus (PVN), which contributes to the disinhibition of sympathoexcitatory circuits and activates sympathetic outflow. At present, the mechanism of chronic mild stress (CMS) on GABAergic transmission at the PVN and cardiac autonomic activity is not yet fully clarified. Therefore, this study was designed to investigate the effects of CMS on the GABAergic system at the PVN and on the cardiac autonomic activity. Adult male Sprague-Dawley rats were randomly assigned to control (left undisturbed in their home cage) or CMS (subjected to various mild stressors for 4 weeks). Cardiac autonomic activities were determined by heart rate variability (HRV) analysis, and GABAergic alterations at the PVN were determined from GABA levels and mRNA expression of GABA-related activities. Results showed that the CMS group had decreased HRV as determined by the standard deviation of all R-R intervals (SDNN). The low frequency (LF) and high frequency (HF) powers of the CMS group were higher than those of the control. Hence, the LF/HF ratio was consequently unaffected. These findings indicated that despite the increase in sympathetic and parasympathetic activities, the autonomic balance was preserved at 4 weeks post CMS. For the GABAergic-related parameters, the CMS group had decreased mRNA expression of glutamic acid decarboxylase-65 (GAD-65), the GABA-synthesizing enzyme, and increased mRNA expression of gamma-aminobutyric acid transporter-1 (GAT-1). Moreover, the GAD-65 mRNA expression was negatively correlated with LF. In conclusion, 4-week CMS exposure in male rats could attenuate GABAergic transmission at the PVN and alter cardiac autonomic activities.
Collapse
Affiliation(s)
- Janpen Bangsumruaj
- Interdisciplinary Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anusak Kijtawornrat
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | |
Collapse
|
5
|
Eck SR, Palmer JL, Bavley CC, Karbalaei R, Ordoñes Sanchez E, Flowers J, Holley A, Wimmer ME, Bangasser DA. Effects of early life adversity on male reproductive behavior and the medial preoptic area transcriptome. Neuropsychopharmacology 2022; 47:1231-1239. [PMID: 35102257 PMCID: PMC9019015 DOI: 10.1038/s41386-022-01282-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/18/2021] [Accepted: 01/14/2022] [Indexed: 02/02/2023]
Abstract
Early life adversity can alter reproductive development in humans, changing the timing of pubertal onset and sexual activity. One common form of early adversity is limited access to resources. This adversity can be modeled in rats using the limited bedding/nesting model (LBN), in which dams and pups are placed in a low resource environment from pups' postnatal days 2-9. Our laboratory previously found that adult male rats raised in LBN conditions have elevated levels of plasma estradiol compared to control males. In females, LBN had no effect on plasma hormone levels, pubertal timing, or estrous cycle duration. Estradiol mediates male reproductive behaviors. Thus, here we compared reproductive behaviors in adult males exposed to LBN vs. control housing. LBN males acquired the suite of reproductive behaviors (mounts, intromissions, and ejaculations) more quickly than their control counterparts over 3 weeks of testing. However, there was no effect of LBN in males on puberty onset or masculinization of certain brain regions, suggesting LBN effects on estradiol and reproductive behaviors manifest after puberty. In male and female rats, we next used RNA sequencing to characterize LBN-induced transcriptional changes in the medial preoptic area (mPOA), which underlies male reproductive behaviors. LBN produced sex-specific alterations in gene expression, with many transcripts showing changes in opposite directions. Numerous transcripts altered by LBN in males are regulated by estradiol, linking hormonal changes to molecular changes in the mPOA. Pathway analysis revealed that LBN induced changes in neurosignaling and immune signaling in males and females, respectively. Collectively, these studies reveal novel neurobiological mechanisms by which early life adversity can alter reproductive strategies.
Collapse
Affiliation(s)
- Samantha R. Eck
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Jamie L. Palmer
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Charlotte C. Bavley
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Reza Karbalaei
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Evelyn Ordoñes Sanchez
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - James Flowers
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Amanda Holley
- grid.411024.20000 0001 2175 4264Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Mathieu E. Wimmer
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Debra A. Bangasser
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
6
|
Kudryavtseva NN. Development of Mixed Anxiety/Depression-Like State as a Consequence of Chronic Anxiety: Review of Experimental Data. Curr Top Behav Neurosci 2021; 54:125-152. [PMID: 34622394 DOI: 10.1007/7854_2021_248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The review presents experimental data considered from the point of view of dynamic changes in the brain neurochemistry, physiology, and behavior of animals during the development of mixed anxiety/depression-like disorder caused by chronic social stress from norm to severe psychopathology. Evidences are presented to support the hypothesis that chronic anxiety rather than social defeat stress is an etiological factor in depression. The consequences of chronic anxiety for human health and social life are discussed.
Collapse
Affiliation(s)
- Natalia N Kudryavtseva
- Neurogenetics of Social Behavior Sector, Neuropathology Modeling Laboratory, FRC Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
7
|
Smagin DA, Kovalenko IL, Galyamina AG, Belozertseva IV, Tamkovich NV, Baranov KO, Kudryavtseva NN. Chronic Lithium Treatment Affects Anxious Behaviors and theExpression of Serotonergic Genes in Midbrain Raphe Nuclei of Defeated Male Mice. Biomedicines 2021; 9:biomedicines9101293. [PMID: 34680410 PMCID: PMC8533389 DOI: 10.3390/biomedicines9101293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
There is experimental evidence that chronic social defeat stress is accompanied by the development of an anxiety, development of a depression-like state, and downregulation of serotonergic genes in midbrain raphe nuclei of male mice. Our study was aimed at investigating the effects of chronic lithium chloride (LiCl) administration on anxiety behavior and the expression of serotonergic genes in midbrain raphe nuclei of the affected mice. A pronounced anxiety-like state in male mice was induced by chronic social defeat stress in daily agonistic interactions. After 6 days of this stress, defeated mice were chronically treated with saline or LiCl (100 mg/kg, i.p., 2 weeks) during the continuing agonistic interactions. Anxiety was assessed by behavioral tests. RT-PCR was used to determine Tph2, Htr1a, Htr5b, and Slc6a4 mRNA expression. The results revealed anxiolytic-like effects of LiCl on social communication in the partition test and anxiogenic-like effects in both elevated plus-maze and social interaction tests. Chronic LiCl treatment upregulated serotonergic genes in midbrain raphe nuclei. Thus, LiCl effects depend on the treatment mode, psycho-emotional state of the animal, and experimental context (tests). It is assumed that increased expression of serotonergic genes is accompanied by serotonergic system activation and, as a side effect, by higher anxiety.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.A.S.); (I.L.K.); (A.G.G.)
| | - Irina L. Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.A.S.); (I.L.K.); (A.G.G.)
| | - Anna G. Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.A.S.); (I.L.K.); (A.G.G.)
| | - Irina V. Belozertseva
- Valdman Institute of Pharmacology, First Pavlov State Medical University of St. Petersburg, 197022 St. Petersburg, Russia;
| | | | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Natalia N. Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.A.S.); (I.L.K.); (A.G.G.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia
- Head of Neuropathology Modeling Laboratory, Institute of Cytology and Genetics SB RAS, pr. Ac. Lavrentjev, 10, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-49-65
| |
Collapse
|
8
|
Smagin DA, Babenko VN, Redina OE, Kovalenko IL, Galyamina AG, Kudryavtseva NN. Reduced Expression of Slc Genes in the VTA and NAcc of Male Mice with Positive Fighting Experience. Genes (Basel) 2021; 12:genes12071099. [PMID: 34356115 PMCID: PMC8306410 DOI: 10.3390/genes12071099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
A range of several psychiatric medications targeting the activity of solute carrier (SLC) transporters have proved effective for treatment. Therefore, further research is needed to elucidate the expression profiles of the Slc genes, which may serve as markers of altered brain metabolic processes and neurotransmitter activities in psychoneurological disorders. We studied the Slc differentially expressed genes (DEGs) using transcriptomic profiles in the ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of control and aggressive male mice with psychosis-like behavior induced by repeated experience of aggression accompanied with wins in daily agonistic interactions. The majority of the Slc DEGs were shown to have brain region-specific expression profiles. Most of these genes in the VTA and NAcc (12 of 17 and 25 of 26, respectively) were downregulated, which was not the case in the PFC (6 and 5, up- and downregulated, respectively). In the VTA and NAcc, altered expression was observed for the genes encoding the transporters of neurotransmitters as well as inorganic and organic ions, amino acids, metals, glucose, etc. This indicates an alteration in transport functions for many substrates, which can lead to the downregulation or even disruption of cellular and neurotransmitter processes in the VTA and NAcc, which are attributable to chronic stimulation of the reward systems induced by positive fighting experience. There is not a single Slc DEG common to all three brain regions. Our findings show that in male mice with repeated experience of aggression, altered activity of neurotransmitter systems leads to a restructuring of metabolic and neurotransmitter processes in a way specific for each brain region. We assume that the scoring of Slc DEGs by the largest instances of significant expression co-variation with other genes may outline a candidate for new prognostic drug targets. Thus, we propose that the Slc genes set may be treated as a sensitive genes marker scaffold in brain RNA-Seq studies.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir N. Babenko
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
| | - Olga E. Redina
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
| | - Irina L. Kovalenko
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Anna G. Galyamina
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Natalia N. Kudryavtseva
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
9
|
Demin KA, Smagin DA, Kovalenko IL, Strekalova T, Galstyan DS, Kolesnikova TO, De Abreu MS, Galyamina AG, Bashirzade A, Kalueff AV. CNS genomic profiling in the mouse chronic social stress model implicates a novel category of candidate genes integrating affective pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110086. [PMID: 32889031 DOI: 10.1016/j.pnpbp.2020.110086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/23/2023]
Abstract
Despite high prevalence, medical impact and societal burden, anxiety, depression and other affective disorders remain poorly understood and treated. Clinical complexity and polygenic nature complicate their analyses, often revealing genetic overlap and cross-disorder heritability. However, the interplay or overlaps between disordered phenotypes can also be based on shared molecular pathways and 'crosstalk' mechanisms, which themselves may be genetically determined. We have earlier predicted (Kalueff et al., 2014) a new class of 'interlinking' brain genes that do not affect the disordered phenotypes per se, but can instead specifically determine their interrelatedness. To test this hypothesis experimentally, here we applied a well-established rodent chronic social defeat stress model, known to progress in C57BL/6J mice from the Anxiety-like stage on Day 10 to Depression-like stage on Day 20. The present study analyzed mouse whole-genome expression in the prefrontal cortex and hippocampus during the Day 10, the Transitional (Day 15) and Day 20 stages in this model. Our main question here was whether a putative the Transitional stage (Day 15) would reveal distinct characteristic genomic responses from Days 10 and 20 of the model, thus reflecting unique molecular events underlining the transformation or switch from anxiety to depression pathogenesis. Overall, while in the Day 10 (Anxiety) group both brain regions showed major genomic alterations in various neurotransmitter signaling pathways, the Day 15 (Transitional) group revealed uniquely downregulated astrocyte-related genes, and the Day 20 (Depression) group demonstrated multiple downregulated genes of cell adhesion, inflammation and ion transport pathways. Together, these results reveal a complex temporal dynamics of mouse affective phenotypes as they develop. Our genomic profiling findings provide first experimental support to the idea that novel brain genes (activated here only during the Transitional stage) may uniquely integrate anxiety and depression pathogenesis and, hence, determine the progression from one pathological state to another. This concept can potentially be extended to other brain conditions as well. This preclinical study also further implicates cilial and astrocytal mechanisms in the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry A Smagin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | | | | | - Alim Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|